Қайырлы күн, білім алушылар! Күні



бет3/7
Дата07.02.2022
өлшемі339,02 Kb.
#94346
түріСабақ
1   2   3   4   5   6   7
Байланысты:
Физика

Атом ядросы — протондар мен нейтрондардан (нуклондардан) құралатын атомның ең ауыр, орталық бөлігі.[1]
Ядролық физика – қазіргі физиканың атом ядросы мен элементар бөлшектерді зерттейтін саласы. Ядролық физика – атом өнеркәсібінің ғылыми негізі. Ол шартты түрде төмендегідей салалардан тұрады.
Атом ядросының жалпы қасиеттері мен құрылымы. Ядроның маңызды қасиеттеріне масса, электр заряды, массалық сан, байланыс энергиясы, магниттік және электрлік момент, ядроның эффективтік мөлшері, ядроның энергия деңгейлерінің жүйесі жатады. Ядролық күштердің заңдылығы белгісіз болғандықтан, ядрода өтетін процестерді зерттеу үшін әр түрлі ядролық модельдер пайдаланылады.
Ядролық күштер. Ядролық күштердің қасиеттері жөнінде бағалы деректер энергиясы әр түрлі протондар, нейтрондар мен протондардың шашырауын, сондай-ақ дейтрон мен күрделі ядролардың қасиеттерін зерттеу кезінде алынған.
Ядролардың өздігінен түрленуі – α, β-бөлшектері мен γ-сәулесін шығаратын табиғи және жасанды радиоактивтілік, сондай-ақ ауыр ядролардың өздігінен бөліну. Ядролық физиканың бұл саласының маңызды бөлігі ядролардан шығатын әр түрлі сәулелерді зерттеу болып есептеледі. Ядролық реакциялар – ядролардың бір-бірімен және элементар бөлшектермен әсерлесуі нәтижесінде түрленуі. Ядролық түрленулердің ішінде энергетикалық мақсат үшін баяу және шапшаң нейтрондар арқылы жүретін реакцияларды (мысалы, ауыр ядролардың бөлінуі), сондай-ақ теориялық және практикалық мақсат үшін жеңіл ядролардың арасындағы реакцияларды зерттеудің зор маңызы бар. Реакциялардың соңғы түрі термоядролық реакцияларды жасанды жолмен жүзеге асыруға мүмкіндік береді. Атомдық нөмірі (Z) 92-ден артық (Z > 92) болатын табиғатта кездеспейтін элементтерді синтездеу үшін көп зарядты иондарды (мысалы, азот және алюминий иондары, т.б.) зерттеудің ерекше маңызы бар. Элементар бөлшектер. Ядролық физиканың бұл саласында нейтрино, антинейтрино, электрон, позитрон, әр түрлі мезондар, нуклондар, антинуклондар, гиперондар мен антигиперондар тәрізді элементар бөлшектердің қасиеттері, олардың пайда болуы мен бір-біріне түрлену процестері зерттеледі. Сондай-ақ бұл салада жоғары энергия физикасының мәселелерін зерттеудің де маңызы ерекше күшті болады.
Нейтрондық физика – нейтрондардың қасиеттерін, ядролардың нейтрондарды қармауын және шашыратуын, нейтрондардың әр түрлі зат ішінде тежелеу мен диффузиясын, т.б. зерттеуге арналған ядролық физиканың ірі саласының бірі. Ол – ядролық энергетика мен ғарыштық ракета техникасының ғылыми негізі. Сондықтан нейтрондық физикада теориялық, сондай-ақ практикалық маңызы бар мәселелер зерттеледі. Нейтрондық физика қатты дене физикасымен, металлургиямен, т.б. физика салаларымен тығыз байланысты. Ядролық физиканың эксперименттік тәсілінде зарядты бөлшек үдеткіштері, сондай-ақ қуатты нейтрондар шоғын алуға мүмкіндік беретін зерттеу реакторлары маңызды орын алады. Қазіргі кезде элементар бөлшектерді бақылау және тіркеу үшін өте нәзік тәсілдер мен приборлар қолданылады (қ. Иондалу камерасы, Зарядты бөлшек санауыштары, Вильсон камерасы). Атом ядросының энергия деңгейлерін және одан шығатын сәулелерді зерттейтін ядролық физиканың саласы ядролық спектроскопия деп аталады. Бұл әдістің көмегімен алынған деректер ядроның құрылысы жөніндегі осы кездегі ұғымдардың негізін құрайды.
Ядролық физиканың жетістігі алғашқы кезде соғыс мақсаты үшін қолданылғанымен (1945), кейін ол бейбіт мақсат үшін де пайдаланыла бастады.
Ядролық физиканың жетістігі нәтижесінде халық шаруашылығының бейбіт салалары – ядролық энергетика және ядролық техника пайда болды. Радиоактивтік изотоптар физикада, химияда, металлургияда, биологияда, т.б. ғылым мен техника салаларында тиімді пайдаланып келеді. Ядролық физиканың дамуы нәтижесінде табиғатта кездеспейтін элементтерді (мысалы, нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий, курчатовий, нильсборий, т.б.) алуға мүмкіндік жасалды. Ядролық физиканың негізінде химияның радиациялық химия және радиохимия деп аталатын жаңа салалары пайда болды. Ядролық физиканың жетістіктері астрофизикада, геологияда, геофизикада, ғарыштық ракета ғылымында және археологияда кеңінен пайдалануда. Ядролық физиканың дамуы біздің табиғат жөніндегі көзқарасымыздың жан-жақты кеңеюіне маңызды ықпал етті.[1][2] [3] [4]
Атом ядросының заряды
Атом ядросының негізгі сипаттамаларының бірі оның электр заряды болып табылады. Атом ядросының зарядын алғаш рет 1913 жылы Г.Мозли өлшеген. Ал ядроның зарядын тікелей өлшеуді ағылшын физигі Дж.Чедвик 1920 жылы жүзеге асырды. Атом ядросының заряды элементар электр зарядының Менделеев кестесіндегі химиялық элементтің {\displaystyle ~Z}  реттік нөміріне көбейтіндісіне тең болады:
{\displaystyle ~q=Z\cdot e}
Сонымен, Менделеев кестесіндегі химиялық элементтің реттік нөмірі кез келген элемент атомының ядросындағы оң зарядтардың санымен анықталады. Сондықтан элементтің {\displaystyle ~Z}  реттік нөмірін зарядтық caн деп атайды.[1]
Атом ядросының массасы
Атом ядросының физикалық қасиеттері оның зарядымен қатар массасымен де анықталады. Ядроны сипаттайтын шамалардың ең маңыздыларының бірі — массаЯдролық физика иондар мен атом ядросының массасын көбінесе масс-спектрографтың көмегімен анықтайды. 8.2-суретте масс-спектрографтың сұлбасы келтірілген. Зерттелетін заттың атомдары иондық көзде (ИК) оң иондалып, әлсіз электр өрісінің әсерінен {\displaystyle ~D_{1}}  диафрагма арқылы әр түрлі жылдамдықпен өтеді. {\displaystyle ~D_{1}}  және {\displaystyle ~D_{2}}  диафрагмалары арасында оң иондар электр өрісінде үдемелі қозғалады. Және осы мезетте оң иондарға индукциясы {\displaystyle ~{\overrightarrow {B_{0}}}}  болатын магнит өрісі де әсер етеді. Осылайша үдетілген оң иондар, оған бір-біріне перпендикуляр бағытталып әсер ететін {\displaystyle ~{\overrightarrow {E_{0}}}}  электр және {\displaystyle ~{\overrightarrow {B_{0}}}}  магнит өрістері арқылы сұрыпталып өтеді. {\displaystyle ~D_{2}}  диафрагма арқылы бұрылмай өтуі үшін {\displaystyle ~F=F_{M}}  немесе {\displaystyle ~qE_{0}=vqB_{0}}  шарты орындалуы керек. Бұл теңдеуден жылдамдықты анықтайық:
{\displaystyle ~v={E_{0} \over B_{0}}}
Осы жылдамдыққа ие болған оң иондар біртекті {\displaystyle ~{\overrightarrow {B}}}  магнит өрісінде орналасқан ВК вакуумдік камераға өтеді. Магнит өрісінің индукция векторы {\displaystyle ~{\overrightarrow {B}}}  иондардың жылдамдық векторына перпендикуляр орналаскан. Магнит өрісінде козғалған оң иондарға модулі {\displaystyle ~F=qvB}  болатын Лоренц күші әрекет етеді. Иондар осы күштің әрекетінен шеңбер бойымен қозғалады. Жартылай шеңбер сыза отырып, массалары бірдей иондар ФП фотопластинаның түрлі орындарында тіркеледі.
{\displaystyle ~F_{p}=F_{c}T}  немесе {\displaystyle ~M\cdot {v^{2} \over R}=qvB}  болғандықтан, ионның массасын
{\displaystyle ~M={qBR \over v}}
өнергі бойынша жоғары дәлдікпен анықтайды. Атом ядросының массасын {\displaystyle ~M}  әрпімен белгілеу қабылданған.[1]
Ядролық физикадағы өлшем бірліктер
Өлшем бірліктерінің Халықаралык жүйесіндегі қолданылатын ұзындықтың, массаның және т.б. өздеріңе таныс өлшем бірліктерімен қатар, ядролық физикада арнайы бірліктер қолданылады. Бұл қажеттілік ядролық процестердің субатомдық әлемде өтетінінен туындайды.
Мысалы, ядролық физикадағы ең үлкен қашықтық атом радиусының өзі 10−10 м-ге тең. Ұзындық бірлігі ретінде ферми алынады: 1фм = 10−15 м. Массаның бірлігі ретінде көміртегі {\displaystyle _{6}^{12}C}  атомы массасының бөлігі алынады, ол массаның атомдық бірлігі болып табылады:


Достарыңызбен бөлісу:
1   2   3   4   5   6   7




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет