ИННОВАЦИОННАЯ ТЕХНОЛОГИЯ БЕЗТОПЛИВНОГО
ПОЛЁТА НА ЛУНУ И ОБРАТНО НА ЗЕМЛЮ
В БЕЗВОЗДУШНОМ ПРОСТРАНСТВЕ
Ерабылай Азен, Дарига Шалтабаева
ЭкО-центр «Ноосфера и Устойчивое развитие». E-mail: erablay_yo@mail.ru
Введение. На основе применения обобщенного логистического метода преобразований Пуанкаре и метода монотонно-разрешающих пульсирующих характеристик (ММР-ПХ – Аубакира Д.А.) доказывается возможность рассмотрения и решения проблемной задачи 3-х тел (в более общем случае «Проблема n тел») из астрофизики и небесной механики, и обосновывается приложимость результатов этого решения для полетов ЛА, где в качестве этих тел берутся Земля (m2 – ее масса), Луна (m1 – ее масса) и НТТ-ЛА (m0 – его масса) – наш летательный аппарат («не требующий топлива ЛА»). При этом, “на стороне” НТТ-ЛА будет действовать усредненное суммарное влияние всех небесных тел, в том числе Земли и Луны [1], [2], [3].
Суть этих обосновываний сводится к тому, что по истечении конечного времени t-t0, где t0≤t≤t1, все три тела окажутся в -окрестности так называемого центроидного аттрактора – в ближайшем окружении траектории центра масс трех тел О0:
(O0; T)={(O0; )T=[t0, t1]}. (1)
Линии, охватывающие соответствующие вершины сечений можно представить так [1]: (mj; T)={(mj; )T=[t0, t1]}, j=0,1,2, где m0, m1, m2 – массы, соответственно НТТ-ЛА, Луны и Земли.
Здесь первый слева треугольник есть начальный выпуклый симплекс 0, следующий – 1, последующий – 2, и т.д., при этом некоторый очередной выпуклый i-симплекс i будет выражать близкую Ɛ-окрестность центроидного (O0; T)-аттрактора (пунктир).
Достарыңызбен бөлісу: |