2005 ж
№21 (4 нұсқа №30)
Дұрыс тетраэдрдің биіктігі h-қа тең. Толық бетінің ауданын табыңыз.
AB=x
SH=h
R-ABC-ға сырттай сызылған шеңбердің радиусы
R=
AS2=SH2+AH2
X2=()2+h2
X2-=h2
X2=h2 SABC=
Sт.б=4
№22 (5 нұсқа №21)
Көлемі 4 см3, ал табанының қабырғасы 2 см-ге тең төртбұрышты дұрыс пирамиданың бүйір қырының ұзындығын табыңыз.
V=4cм3
AB=2 см
SABCD=22=4см2
V= SABCD*SH
SH=3V: SABCD
SH=12:4=3
АС=2, HC=
SC=
№23.(15 нұсқа №16)
Пирамиданың табан қабырғасы а-ға тең шаршы. Іргелес екі бүйір жағы табынына перпендикуляр, ал басқа екі бүйір жағы табанымен 600 бұрыш жасайды. Пирамиданың толық бетінің ауданын табыңыз.
ABCB-шаршы, AB=a
0
Sт.б=Sтаб+2(SASD+SSAB)
Sтаб=a2
SD= tg600
AD
SA=a
SASB=AS*AB=*a*2a=a2
SSAD= AD*SA=*a* a=a2
Sт.б=a2+2(a2+a2)2=a2(3+)
2006 ж
№24.(14 нұсқа №30)
Пирамиданың табанына параллель жазықтық қимасы биіктікті 1:1 қатынасындай бөледі. Қима ауданы 2 м2 болса, табан ауданы неге тең?
SH1=2SH S1=2 м2
=()2
S1=8 м2
№25 (17 нұсқа №13)
MABCD дұрыс төртбұрышты пирамиданың МО биіктігі 7 см-ге тең, ал бүйір қыры 14 см- ге тең болса, онда скаляр көбейтіндісін табыңыз.
MO=7, MA=14.
AO2= MA2-MO2
AO=
M(0;0;7), O(0;0;0), C(-7;0;0)
MO(0;0;7)
MC(-7;0;7)
=0+0+49=49
2007 ж
№26 (6 нұсқа №24)
Төртбұрышты дұрыс пирамиданың табан қабырғасы а-ға тең, бүйір қырындағы екі жақты бұрыштары 1200-тан. Пирамиданың көлемі неге тең?
Sтаб=
ABC:
CB2=CE2 +EB2-2CE *CB cos1200
CE=x
a2=3x2
x=
SAC:
AE2=AC2-CE2
AE==a
AS=CS=y
ES2+EC2=SC2
ES=AS-ES
(y- a)2+=y2
y2-2ax+2+= y2
y=
AS=
SAH: AH=
SH2=AS2-AH2
SH=
V= Sтаб SH=**=
Достарыңызбен бөлісу: |