эллипстің жабайы (канондық) теңдеуі деп аталады.
Теорема. Эллипстің фокустық ара қашықтығы мен жарты өстері мынадай қатынас бойынша байланысады:
a2 = b2 + c2.
Дэлелдеу: Егер М нүкте эллипстің вертикаль осьпен қиылысу нүктесінде болса, онда r1 + r2 = 2( Пифагор теоремасы бойынша). Егер М нүкте эллипстің горизонталь осьпен қиылысу нүктесінде болса, онда r1 + r2 = a – c + a + c. Эллипстің
нықтамасы бойынша r1 + r2 – қосынды тұрақты шама, ендеше жоғарыдағы екі теңдікті теңестіріп, мынадай теңдік аламыз:
a2 = b2 + c2 .
Анықтама. = с/a қатынас эллипстің эксцентриситеті деп аталады. с < a
болғандықтан, < 1 болады.
Эллипстің түрін оның жабайы теңдеуі бойынша зерттеу.
(4) теңдеу бойынша эллипстің бірнеше қасиеттерін анықтайық..
х=а
х=-а
у
у=в
М
М2
В2
х
А1
А2
О
1). (4) теңдеудегі х пен у екінші дәрежелі болғандықтан, ол теңдеуді М(х;у) нүктесінің координаталарымен қоса М1(х;-у), М2(-х;у), М3(-х;-у) нүктелерінің де координаталары қанағаттандырады.
у=-в
М1
М3
В1
Ендеше эллипс координат осьтеріне,
Координата басына қарағанда симметриялы .
2) у=0 болса, болады, бұдан х = а. Сондықтан эллипс ох осін А1(-а; 0) және А2(а;0) нүктелерінде қияды. Ал х=0 болғанда шығады да, у= в. Демек, эллипс оу осін В1(0;-в), В2(0; в) нүктелерінде қияды. Эллипстің осьтермен қиылысу нүктелері (А1, А2, В1, В2 )
Достарыңызбен бөлісу: |