Математиканың даму тарихы


Айнымалы шамалар математикасы кезеңі



бет3/4
Дата26.05.2023
өлшемі23,48 Kb.
#177759
1   2   3   4
Байланысты:
матемтарих

Айнымалы шамалар математикасы кезеңі.
17 ғасыр. 17 ғасырдан бастап математиканың дамуында негізінен өзгеше кезең басталды. Енді математика зерттейтін сандық қатынастар мен кеңістік формаларының ауқымы сандар, шамалар және геометриялық фигуралармен шектелмейді,алғы шепке функция ұғымы шығады, өйткені математикаға қозғалыс, өзгеріс идеясы ашық енгізіледі.Математеканың дамуындағы бұл кезең 17 ғасырдағы математикалық жаратылыс танудың (ең әуелі механика, оптика) дамуына тікелей байланысты туды, жекелеген табиғат құбылыстарының ағымын жалпы, математикалық жолмен тұжырымдалған табиғат заңдары түрінде өрнектеу қажет болды.17 ғасырдағы математикалық жетістіктері логарифмдердің ашылуынан басталды. 1637 жылы Р. Декарт «Геометрия» атты еңбегін жариялады. Ол мұнда сол дәуірдегі бүкіл математикаға дерлік алгебраны арқау етіп аналитикалық геометрияны жасады. Осының арқасында математикалық анализдің түрлі салаларының- дифференциалдық интегралдық, вариациялық есептеулердің тууын дайындаған жалпы әдіс жасады. Декарттың бұл әдісі екі идеяға- координаталар мен айнымалы шамалар идеясына негізделді. Математикалық анализдің бастамаларын жасауда П.Ферма, И. Кеплер, Б. Паскаль, ағылшын математигі Дж. Валлис т.б. көп еңбек сіңірді. р (х)=0 теңдеуінің түбірлерін y=p(х) қисық сызығы мен абцисса осінің қиылысу нүктелері арқылы кескіндеу мүмкіндігіне тығыз байланысты алгебрада кез келген дәрежелі теңдеудің нақты түбірлерін зерттеу қолға алынды (Р. Декарт, И. Ньютон, француз математигі М. Ролль). И. Ферманың максимум және минимумдар, қисық сызықтарға жанама жүргізу жөніндегі зерттеулерінде дифференциалдық және интегралдық есептеулердің әдістері кездеседі (бірақ дараланып бөлінбеген). Шексіз аз шамалар анализінің тағы бір көзі И. Кеплер (1615) мен Б. Кавальери (1635) еңбектеріндегі айналу денелерінің көлемін және басқа есептерді шешуге қолданылған « бөлінбейтіндер методы» болып табылады. 17 ғасырдың аяғына таман И. Ньютон мен Г. Лейбниц еңбектерінде дәл мағынасындағы дифференциалдық және интегралдық есептеулердің негізі қаланды. Олар алғаш рет жаңа есептеудің негізгі амалдары дифференциалдау мен интегралдауды жалпы түрде қарастырып, олардың өзара байланысын тағайындады ( Ньютон- Лейбниц формуласы). Алайда Ньютон мен Лейбниц бұл мәселеге қатысы әр түрлі көзқараста болды. Ньютон үшін бастапқы ұғымдар- механикалық есептерден келген « флюента» (айнымалы шама) және оның « флюксиясы» (айнымалы шаманың өзгеру жылдамдығы). Флюксияларды және флюенталар бойынша флюнсиялар арасындағы қатыстарды ( дифференциалдау және дифференциалдық теңдеулер құру) табуды көздеген тура есепке Ньютон флюнсиялар арасындағы қатыстар бойынша флюенталарды табу жайлы кері еспті, былайша айтқанда дифференциалдық теңдеулерді интегралдаудың жалпы есебін қарсы қойды. Лейбниц болса әсіресе шекті шамалар алгебрасынан шексіз аз шамалар алгебрасына көшуге көп көңіл болды, ол интегралды ең әуелі саны шексіз көп шексіз аз шамалардың қосындысы ретінде, ал дифференциалдық есептеулердің негізгі ұғымын айнымалы шамалардың шексіз өсімшесі түрінде қарастырды. Бұл саладағы идеяларды Я. Бернулли, И. Бернулли, француз математигі Г. Лопиталь т.б. одан әрі дамытты. Аналитикалық геометриядан басқа алгебра мен анализге тығыз байланысты дифференциалдық геометрия да дамыды. 17 ғасырда проективтік геометрияның да негізгі ұғымдары қалыптаса бастады. Бұл ғасырдағы математиканың басқа жетістіктерінің қатарына сандар теориясы жөніндегі Б. Паскаль мен П. Ферма зерттеулерін, комбинаториканың негізгі ұғымдарының жасалуын, ықтималдықтар теориясы жайлы алғашқы жұмыстарды атауға болады.
18 ғасыр. Математиканың айтылмыш тараулары, әсіресе математикалық анализ 18 ғасырда одан әрі дамыды. Бұл салада ұлы математиктер Л. Эйлер мен Ж. Лагранж ерекше еңбек сіңірді. Осы ғалымдар мен француз математигі А. Лежандр еңбектерінде сандар теориясы алғаш рет жүйелі ғылым санатына қосылды. Алгебрада швейцар математигі Г. Крамер (1750) сызықтық теңдеулер жүйесін шешу үшін анықтауыштарды енгізді. Ағылшын математигі А. Муавр мен Л. Эйлердің көрсеткіштік және тригонометриялық функциялардың байланысын көрсететін формулалары комплекс сандардың математикадағы қолдану өрісін кеңейте түсті. И. Ньютон, шотланд математигі Дж. Стирлинг, Л. Эйлер және П. Лаплас шектеулі айырымдарды есептеудің негізін қалады. К. Гаусс 1799 жылы алгебраның негізгі теоремасының бірінші дәлелін жариялады. Математикалық анализ әсіресе дифференциалдық теңдеулер әдістері механика мен физиканың, сондай-ақ техникалық процестердің заңдарын, математикалық өрнектеудің негізін қалады; жаратылыс тану мен техниканың ілгерілеуі осы әдістерге тікелей байланысты болды. Ағылшын математигі Б. Тейлор (1715) кез келген функцияларды дәрежелік қатарға жіктеу жөніндегі өзінің формуласын ашты. 18 ғасыр математиктері үшін қатарлар анализдің ең бір қуатты, икемді құралына айналды. Л. Эйлер, Ж. Лагранж бірінші ретті, ал Л. Эйлер, Г. Монж, П. Лаплас екінші ретті дербес туындылы дифференциалдық теңдеулердің жалпы теориясының негізін қалады. Математикалық анализдің ықпалымен аналитикалық механика, математикалық физика т.б. жаңа салалар қалыптаса бастады; математикалық анализдің айрықша бір бұтағы- вариациялық есептеу қалыптасып, маңызды қолданыс тапты. Ағылшын математигі А. Муавр, Я. Бернулли, П. Лаплас 17-18 ғасырлардағы жекелеген нәтижелерге сүйеніп ықтималдықтар теориясының негізін қалады.
Геометрия саласында Л. Эйлер элементар аналитикалық геометрия жүйесін жасауды аяқтайды. Л. Эйлер, француз математигі А. Клеро, Г. Монж еңбектерінде кеңістіктегі қисық сызықтар мен беттердің дифференциалдық геометриясының негізі салынды. Неміс ғалымы Ламберт перспектива теориясын дамытты, ал Г. Монж сызба геометрияны аяқталған түрге келтірді.


Достарыңызбен бөлісу:
1   2   3   4




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет