Пән мұғалімі: Әпсежанова А.Қ


Үй тапсырмасын қайталау сабақ барысында орындап вк жүктеу



бет2/5
Дата14.05.2020
өлшемі34,86 Kb.
#68053
1   2   3   4   5
Байланысты:
Zhary 1179 ty 1187 kvantty 1179 teoriasy kvantty 1179 teoria turaly 1201 1171 ym Fotoelektr
Русская литература Обелиск. ОП 9Д 30.04
Үй тапсырмасын қайталау сабақ барысында орындап вк жүктеу.

Студенттерге тапсырмалар: физикадан ОП9Д тобының тапсырмасы.

1-тапсырма: пысықтау сұрақтарына жазбаша жауап беру:

1) Жылдамдықтарды түрлендірудегі релятивтік заңы қалай жазылады?

2) Эйнштейн постулаттары?

3) Байланыс энергиясы ?

4) Арнаулы салыстырмалылық теориясы

2- тапсырма: а) Жарық с-та қандай қашықтықты жүріп өтеді?

в) Протон 0,75 с жылдамдықпен қозғалады.Оның тыныштық ,толық және

кинетикалық энергиясын анықтаңдар?



3- тапсырма: Кестені толтырыңдар:

Физикалық ұғым заңдары

Классикалық механика

Релятивистік механика

Жылдамдықтарды қосудың заңы







Арақашықтығы







Уақыт аралығы









Дәріс. 10 ЖАРЫҚТЫҢ КВАНТТЫҚ ТЕОРИЯСЫ.КВАНТТЫҚ ТЕОРИЯ ТУРАЛЫ ҰҒЫМ (§ 27-28)

10.1 Жарықтың кванттық қасиетін растайтын тәжірибелер. Жарықтың корпускулалық-толқындық табиғатының біртұтастығы.Геометриялық оптикада жарық сәулелерінің бағыты ғана зерттеледі. Жарықтың таралу процесінің уақытқа байланысты қалай өтетіні жөніндегі мәселе геометриялық оптика көлеміне кіреді. Жарықтың қасиеті және оның затпен өзара байланысы физикалық (толкын) оптикада толығырақ қарастырылады. Біз бұл тарауды жарық жылдамдығын қалай өлшегені жөніндегі әңгімеден бастаймыз.Қосқышты басьш қалсақ, жарқ етіп бөлме іші жарыққа толады. Жарықтың қабырғаларға жетуіне уақыттың мүлде керегі жоқ сияқты. Жарық жылдамдығын анықтау үшін толып жатқан тәжірбелер жүргізілген. Ол үшін жарық сигналының алыс ара қашықтықтарға (бірнеше километрге) таралу уақыты дәл сағатпен өлшемек болған. Бірақ бұдан еш нәтиже шықпады. Жарықтың таралуына мүлде уақыт кетпейді, жарық қандай ара қашықтыққа болсын лезде жетеді деп ойлайтын болды. Алайда олай емес, жарықтың жылдамдығы шектеулі больш шықты, ақырында ол жылдамдық та өлшенді.

Корпускулалық-толқындық дуализм 

Ғалымдар жарықты бөлшектер ағыны деп түсіндіруге мәжбүр болды. Бұл Ньютонның корпускулалық теориясына қайта оралу сияқты болып көрінуі мүмкін. Алайда жарықтың интерференциясы мен дифракциясы оның толқындық қасиеті бар екенін толық дәлелдейтінін үмытпау керек. Жарықтың өзіндік дуализм (екіжақтылык,) қасиеті бар. Жарықтың таралуы кезінде оның толқындық қасиеттері, ал заттармен әсерлескенде (сәуле шығаруда және жұтылуда) корпускулалық қасиеттері байқалады. Осының бәрі, әрине, таңдандырарлық және әдетгегіден өзгеше. Оның қалай болатынын көрнекі түрде көз алдымызға мүмкін емес. Алайда ол факт. Микродүниедегі процестерді толық көрнекі түрде көз алдымызға елестету мүмкіндігі бізде жоқ, өйткені олар адамзаттың миллиондаған жылдар бойы бақылап, негізгі заңдары XIX ғасырдың аяғына қарай тұжырымдалған, макроскопиялық құбылыстардан мүлде басқаша.Бертін келе екі жақтылық қасиет электроңдарда да, басқа элементар бөлшектерде де ашылды. Атап айтқанда, электронның корпускулалық қасиеттерімен бірге толқындық қасиеттері де бар. Электрондардың дифракциясы мен интерференциясы байқалады.Микрообъектілердің мұндай дағдыған тыс қасиеттерін микробөлшектер қозғалысының қазіргі теориясы - кванттық механиканың жәрдемімен түсіндіріледі. Мұнда Ньютон механикасын пайдалануға болмай қалады. Бірақ кванттық механиканы оқып-үйрену физиканың мектептік курсынын көлемінен шығып кетеді.



Фотон - тыныштық массасы мен электр зарядынан айырылған элементар зарядынан айырылған элементар бөлшек, бірақ оның энергиясы мен импульсі бар. Бұл зарядталған бөлшектер арасындағы өзара әсерлесуді жүзеге асыратын электромагниттік өрістің кванты. Электромагниттік энергияны жеке үлестермен жұту және шығару - электромагниттік өрістің корпускулалық қасиеттерінің көрініс беру болып табылады.

Корпускулалық-толқындық дуализм — микроскопиялық деңгейде көрінетін материянын жалпы (ортақ) қасиеті.

10.2 Кванттық механикатолқындық механика – микробөлшектердің (элементар бөлшектердің, атомдардың, молекулалардың, атом ядроларының) және олардың жүйелерінің (мысалы, кристаллдардың) қозғалу заңдылықтарын анықтайтын, сондай-ақ, бөлшектер мен жүйелерді сипаттайтын физикалық шамаларды макроскопиялық тәжірибеде тікелей өлшенетін шамалармен байланыстыратын теория.

Кванттық механиканы – кванттық теориясында, кванттық химияда, кванттық статистикада, т.б. қолданылады. Ол екі тармаққа бөлінеді: бейрелятивистік (жарық жылдамдығымен салыстырғанда төмен жылдамдықтағы с) және релятивистік (жарық жылдамдығымен салыстыруға болатын жоғары жылдамдықтағы с).

Бейрелятивистік кванттық механика (өзінің қолданылу аймағындағы Ньютон механикасы сияқты) – толық аяқталған, қайшылықтары жоқ, өз саласында кез келген есептерді шешуге мүмкіндігі бар теория. Керісінше, релятивистік кванттық механиканы мұндай теория қатарына жатқызуға болмайды. Классикалық механика кванттық механиканың жуықталған дербес түрі болып саналады. Түсініксіз эффектілер жиі кездеседі, Салыстырмалылық теориясының кабілеттілігі жойылады.



Достарыңызбен бөлісу:
1   2   3   4   5




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет