Перспектива и проективная геометрия


Гармоническая четверка (продолжение)



бет11/29
Дата06.05.2020
өлшемі0,73 Mb.
#66379
1   ...   7   8   9   10   11   12   13   14   ...   29
Байланысты:
Перспектива и проективная геометрия

Гармоническая четверка (продолжение)


В предыдущей главе гармоническая четверка точек была построена одной линейкой, в духе проективной геометрии. Вернемся на привычную евклидову плоскость и проведем построение с использованием параллельности, равенства отрезков, углов, и прочих непроективных понятий. Впоследствии эти построения приведут к новым проективным теоремам.

Заметим во-первых, что если точка М – середина отрезка АВ, а точка Р – бесконечно удаленная, то АВ,МР – гармоническая четверка. Это произойдет, если одна из диагоналей четырехвершинника станет бесконечно удаленной прямой, а сам четырехвершинник будет выглядеть, как параллелограмм. Построив проекцию такой четверки на любую прямую, получим также гармоническую четверку.




Чтобы построить проекцию бесконечно удаленной точки Р, достаточно провести через центр проекции прямую, параллельную АВ.

Пусть на прямой АВ задана произвольная точка М. Проведем через точку В произвольную прямую и отложим на ней два равных отрезка ВМ' и М'А'. Прямые АА и ММ' пересекаются в точке О. Проводя через точку О прямую, параллельную М'А', до пересечения с АВ в точке Р, получаем гармоническую четверку АВ,МР.
Действительно, четверка АВ,МР является проекцией гармонической четверки А'В,М'Р, где М' – середина отрезка А'В, а Р – бесконечно удаленная точка прямой А'В.

Однако, гораздо более важные следствия можно получить из другого построения, известного еще Аполлонию.



Проведем в треугольнике АВС биссектрису угла С и перпендикулярную к ней биссектрису угла, внешнего к С. Эти биссектрисы пересекают прямую АВ в точках Р и М. По известной теореме планиметрии и . Следовательно, и АВ,МР – гармоническая четверка.

Угол между биссектрисами СР и СМ – прямой, значит точка С лежит на окружности с диаметром МР (окружность Аполлония). Оказывается, если двигать точку С по этой окружности, то СР и СМ все время будут оставаться внутренней и внешней биссектрисами угла С в треугольнике АВС. Докажем это, а заодно получим еще один способ построения гармонической четверки с помощью окружности.

Для доказательства заметим, что прямые СА и СВ вторично пересекают окружность Аполлония в точках, симметричных относительно диаметра МР. Это следует из того, что равные вписанные углы при вершине С опираются на равные дуги PD и PE.

Наоборот, пусть А – произвольная точка на прямой, содержащей диаметр МР(точка А может лежать и снаружи окружности). Проведем через нее произвольную секущую CD и построим точку окружности Е, симметричную точке С относительно диаметра МР. Тогда прямая ЕС пересечет МР в точке В, и АВ,МР – гармоническая четверка. Действительно, СР и СМ будут являться внутренней и внешней биссектрисами угла С в треугольнике АВС в силу равенства соответствующих вписанных углов.



Интересно, что само построение возникает у Аполлония при решении такой задачи: найти геометрическое место точек плоскости, таких, что отношение расстояний от каждой из них до фиксированных точек А и В постоянно и равно k.

Две из этих точек – М и Р, гармонически разделяют данную пару А и В, а остальные лежат на окружности с диаметром МР. Это следует из свойства биссектрисы .

Можно также заметить, что если на чертеже точки С и Е совпадут, то прямая ВС станет касательной к окружности. Легко доказать, что и в этом случае СМ и СР останутся биссектрисами соответствующих углов. Треугольник АВС станет прямоугольным, тогда из подобия треугольников АСО и СВО следует:

или , где R – радиус окружности.

Если теперь рассмотреть прямую АВ, как ось координат с началом в точке О, то точки М,Р,А,В будут иметь координаты , или если положить R = 1, то получим .

Точки А и В, гармонически сопряженные относительно концов диаметра МР называются симметричными относительно окружности. Построить их можно также, проводя касательные к окружности, как это видно на чертеже.



Можно рассмотреть преобразование плоскости, которое обменивает местами симметричные точки. При этом все точки, находившиеся внутри окружности, оказываются снаружи, и наоборот. Это преобразование называется инверсией плоскости и обладает многими интересными свойствами, однако подробный разговор о нем – задача другой статьи.



Достарыңызбен бөлісу:
1   ...   7   8   9   10   11   12   13   14   ...   29




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет