Полагаем, что U(r = ) = 0 – при больших расстояниях потенциальная энергия взаимодействия равна нулю. В этом случае кривая взаимодействия описывается потенциалом Леннарда-Джонса
Полагаем, что U(r = ) = 0 – при больших расстояниях потенциальная энергия взаимодействия равна нулю. В этом случае кривая взаимодействия описывается потенциалом Леннарда-Джонса :
U( r) = – ar –6 + br –12
U( r) = – ar –6 + br –12
Рисунок 7.2
Потенциал Леннарда-Джонса
Глубина потенциала равна U(rmin) = –a2/4b при rmin = (2b/a)1/6 – расстоянии, соответствующем наибольшей энергии связи молекул. Отметим, что в данном потенциале не учтены ориентационные взаимодействия, существенные для многоатомных молекул и кристаллов.
Уравнение Ван-дер-Ваальса – одно из первых уравнений состояния реального газа, которое было предложено в 1873 г. голландским физиком Ван-дер-Ваальсом. Данное уравнение учитывает конечные размеры всех молекул, что становится существенным при больших давлениях, а также притяжение молекул в результате межмолекулярного взаимодействия.
Учтем влияние конечных размеров молекул на уравнение состояния реального газа. Давление определяется средней кинетической энергией теплового движения всех молекулР = nkT. При конечных размерах молекул, имеющих радиус r, область 4(2r)3/3 вокруг каждой из молекул будет недоступна для попадания в нее другой неточечной молекулы.
В результате в сосуде, содержащем N молекул конечных размеров, область объемом (N/2)4(2r)3/3 = 4NVмолек будет недоступна для столкновений (Vмолек = 4r3/3 – объем одной молекулы). Поэтому можно считать, что половина всех молекул занимает объем b = 4NVмолек и покоится, а другая половина представляет собой точечные молекулы и движется с удвоенной кинетической энергией, обладая температурой Т = 2Т.