Диффузия газов в легких.
Парциальное давление кислорода в альвеолах (100 мм рт.ст.) значительно выше, чем напряжение кислорода в венозной крови, поступающей в капилляры легких (40 мм рт.ст.). Градиент парциального давления углекислого газа направлен в обратную сторону (46 мм рт.ст. в начале легочных капилляров и 40 мм рт.ст. в альвеолах). Эти градиенты давлений являются движущей силой диффузии кислорода и двуокиси углерода, т.е. газообмена в легких.
Согласно закону Фика диффузный поток прямо пропорционален градиенту концентрации. Коэффициент диффузии для СО2 в 20-25 раз больше, чем кислорода. При прочих равных условиях углекислый газ диффундирует через определенный слой среды в 20-25 раз быстрее, чем кислород. Именно поэтому обмен СО2 в легких происходит достаточно полно, несмотря на небольшой градиент парциального давления этого газа.
При прохождении каждого эритроцита через легочные капилляры время, в течение которого возможна диффузия (время контакта) относительно невелико (около 0,3 с). Однако этого времени вполне достаточно для того, чтобы напряжения дыхательных газов в крови и их парциальное давление в альвеолах практически сравнялись.
Диффузионную способность легких, как и альвеолярную вентиляцию, следует рассматривать в отношении к перфузии (кровоснабжению) легких.
8.3. ТРАНСПОРТ ГАЗОВ КРОВЬЮ
Почти во всех жидкостях может содержаться некоторое количество физически растворенных газов. Содержание растворенного газа в жидкости зависит от его парциального давления.
Хотя содержание в крови О2 и СО2 в физически растворенном состоянии относительно невелико, это состояние играет существенную роль в жизнедеятельности организма. Для того, чтобы связаться с теми или иными веществами, дыхательные газы сначала должны быть доставлены к ним в физически растворенном виде. Таким образом, при диффузии в ткани или кровь каждая молекула О2 или СО2 определенное время пребывает в состоянии физического растворения.
Большая часть кислорода переносится кровью в виде химического соединения с гемоглобином. 1 моль гемоглобина может связать до 4 молей кислорода, а 1 грамм гемоглобина – 1,39 мл кислорода. При анализе газового состава крови получают несколько меньшую величину (1,34 – 1,36 мл О2 на 1 г. Hb). Это обусловлено тем, что небольшая часть гемоглобина находится в неактивном виде. Таким образом, ориентировочно можно считать, что in vivo 1г Hb связывает 1,34 мл О2 (число Хюфнера).
Исходя из числа Хюфнера, можно, зная содержание гемоглобина, вычислить кислородную емкость крови: [О2] макс = 1,34 мл О2 на 1 г Hb; 150 г Hb на 1 л крови = 0,20 л О2 на 1 л крови. Однако, такое содержание кислорода в крови может достигаться лишь в том случае, если кровь контактирует с газовой смесью с высоким содержанием кислорода (РО2 = 300 мм рт.ст.), поэтому в естественных условиях гемоглобин оксигенируется не полностью.
Реакция, отражающая соединения кислорода с гемоглобином подчиняется закону действующих масс. Это означает, что отношение между количеством гемоглобина и оксигемоглобина зависит от содержания физически растворенного О2 в крови; последнее же пропорционально напряжению О2. Процентное отношение оксигемоглобина к общему содержанию гемоглобина называется насыщением гемоглобина кислородом. В соответствии с законом действующих масс насыщение гемоглобина кислородом зависит от напряжения О2. Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина. Эта кривая имеет S – образную форму (Рис. 29.).
Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения РО2, т.е. такое напряжение О2, при котором насыщение гемоглобина кислородом составляет 50 %. В норме РО2 артериальной крови составляет около 26 мм рт.ст.
Рис. 29. Кривые диссоциации оксигемоглобина при различных рН крови.
Конфигурация кривой диссоциации оксигемоглобина важна для переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение О2 в крови приближается к парциальному давлению этого газа в альвеолах. У молодых людей РО2 артериальной крови составляет около 95 мм рт.ст. При таком напряжении насыщение гемоглобина кислородом равно примерно 97 %. С возрастом (и в еще большей степени при заболеваниях легких) напряжение О2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РО2 в артериальной крови до 60 мм рт.ст. насыщение гемоглобина кислородом равно 90 %. Таким образом, благодаря тому, что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, насыщение артериальной крови кислородом сохраняется на высоком уровне даже при существенных сдвигах РО2.
Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует о благоприятной ситуации для отдачи кислорода тканям. В состоянии покоя РО2 в области венозного конца капилляра равно приблизительно 40 мм рт.ст., что соответствует примерно 73 % насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт.ст., то насыщение гемоглобина кислородом снижается на 75 %: высвобождающийся при этом О2 может быть сразу же использован для процессов метаболизма.
Несмотря на то, что конфигурация кривой диссоциации оксигемоглобина обусловлена главным образом химическими свойствами гемоглобина, существует и ряд других факторов, влияющих на сродство крови к кислороду. Как правило, все эти факторы смещают кривую, увеличивая или уменьшая ее наклон, но не изменяя при этом ее S-образную форму. К таким факторам относятся температура, рН, напряжение СО2 и некоторые другие факторы, роль которых возрастает в патологических условиях.
Равновесие реакции оксигенации гемоглобина зависит от температуры. При понижении температуры наклон кривой диссоциации оксигемоглобина увеличивается, а при ее повышении – снижается. У теплокровных животных этот эффект проявляется только при гипотермии или лихорадочном состоянии.
Форма кривой диссоциации оксигемоглобина в значительной степени зависит от содержания в крови ионов Н+. При снижении рН, т.е. закислении крови, сродство гемоглобина к кислороду уменьшается, и кривая диссоциации оксигемоглобина называется эффектом Бора.
РН крови тесно связано с напряжением СО2 (РСО2): чем РСО2 выше, тем рН ниже. Увеличение напряжения в крови СО2 сопровождается снижением сродства гемоглобина к кислороду и уплощение кривой диссоциации НbО2. Эту зависимость также называют эффектом Бора, хотя при подобном количественном анализе было показано, что влияние СО2 на форму кривой диссоциации оксигемоглобина нельзя объяснить только изменением рН. Очевидно, сам углекислый газ оказывает на диссоциацию оксигемоглобина «специфический эффект».
При ряде патологических состояний наблюдаются изменения процесса транспорта кислорода кровью. Так, есть заболевания (например, некоторые вида анемий), которые сопровождаются сдвигами кривой диссоциации оксигемоглобина вправо (реже – влево). Причины таких сдвигов окончательно не раскрыты. Известно, что на форму и расположение кривой диссоциации оксигемоглобина оказывают выраженное влияние некоторые фосфорорганические соединения, содержание которых в эритроцитах при патологии может изменяться. Главным таким соединением является 2,3-дифосфоглицерат – (2,3 – ДФГ). Сродство гемоглобина к кислороду зависит также от содержания в эритроцитах катионов. Необходимо отметить также влияние патологических сдвигов рН: при алкалозе поглощение кислорода в легких в результате эффекта Бора увеличивается, но отдача его тканям затрудняется; а при ацидозе наблюдается обратная картина. Наконец, значительный сдвиг кривой влево имеет место при отравлении угарным газом.
Достарыңызбен бөлісу: |