1 основные параметры электрического тока Электрический ток


Электротермический пробой



бет13/20
Дата16.06.2022
өлшемі444,02 Kb.
#146663
1   ...   9   10   11   12   13   14   15   16   ...   20
Байланысты:
Материалка

Электротермический пробой характерен для хрупких диэлектриков и пористых керамик. Он возникает в результате механического разрушения из-за развития микротрещин под действием разрядов в газовых включениях, которые образуют перегретые области диэлектрика.
Электромеханический пробой - механическое разрушение полимера при высоком напряжении в результате того, что полимер находится в высокоэластичном состоянии. Причиной является уменьшение толщины диэлектрика из-за электростатического притяжения электродов под действием высокого напряжения. 
15)?????
16)?????
17)?????
18)?????
19) Керамические диэлектрики



Керамические материалы (фарфор и фаянс) получают в результате обжига при высокой температуре смеси, приготовленной из глины с добавлением кварца (песка) и полевого шпата.
Керамические материалы могут быть весьма разнообразны по свойствам и применению. Фарфоровые изделия имеют высокую стойкость к тепловому старению. Фарфор имеет высокий предел прочности при сжатии (400 - 700 МПа), значительно меньший предел прочности при растяжении (45-70 МПа) и при изгибе (80-150 МПа), повышенную хрупкость при ударах.
Процесс производства керамических изделий проходит в три основных этапа: 1) приготовление керамической массы путем очистки от примеси ее составляющих компонентов, тщательного их измельчения и перемешивания с водой в однородную массу; 2) формирование изделия заданной конфигурации и размеров методом формования, прессования, выдавливания или литья; 3) сушка, обжиг.
Основным представителем установочной низкочастотной керамики является электрофарфор, который широко применяется для изготовления изоляторов: штыревых и подвесных, опорных и проходных, а также различных установочных деталей (розеток, вилок, ламповых патронов и т.п.). В отличие от других видов керамики электрофарфор обладает более низкими электрическими и механическими свойствами. Преимущества состоят в возможности изготавливать изделия сложной конфигурации, используя простые технологические процессы и малодефицитное сырье.
Радиофарфор представляет собой фарфор, стекловидная фаза которого облагорожена введением в нее тяжелого оксида ВаО.
Ультрафарфор различных марок является дальнейшим усовершенствованием радиофарфора, характеризуется значительным содержанием А12О3. значение tgδ ультрафарфора меньше, а ρ больше, чем обычного электротехнического фарфора. Кроме того, ультрафарфор имеет повышенную по сравнению с обычным фарфором механическую прочность, а также теплопроводность.
Высокоглиноземистая керамика (алюминоксид) в основном состоит из корунда. Этот материал, требующий сложной технологии изготовления с высокой температурой обжига (до 1750 °С), обладает высокой нагревостойкостью (рабочая температура до 1600 °С), очень высокой механической прочностью и теплопроводностью (коэффициент теплопроводности в 10—20 раз выше, чем у фарфора).
Обладающий особо плотной структурой (его плотность близка к теоретической плотности А12О3поликор (за рубежом — люкалокс) в отличие от обычной (непрозрачной) корундовой керамики прозрачен, поэтому его применяют для изготовления колб некоторых специальных электрических источников света; он имеет ρ на порядок выше, чем непрозрачная глиноземистая керамика.
Стеатит - разновидность керамики, изготовляемая на основе талька 3MgO·4SiO2·Н2О. В то время как фарфор состоит в основном из силикатов алюминия, стеатитовая керамика — из силикатов магния. Электроизоляционные свойства стеатита высоки.
Керамические диэлектрики характеризуются высоким удельным сопротивлением (ρ ≈ 1014 Ом·м) и малым тангенсом угла диэлектрических потерь (tg δ = 10-4 – 10-3) даже при повышенных температурах ( до 1000 °С). Значение ε = 6 - 10. В конденсаторостроении применяют керамические материалы - сегнетоэлектрики с высокой ε (до 10 000 и более).
Металлизация керамики, проводимая обычно нанесением серебра методом вжигания, обеспечивает возможность осуществления спайки с металлом. Это имеет особое значение для герметизированных конструкций радиоэлектронной аппаратуры.
20) Разряд в воздухе по поверхности твердого диэлектрика
Разрядные напряжения в воздухе вдоль поверхности твердого диэлектрика значительно меньше, чем по тому же пути в чисто воздушных промежутках, и зависят от степени неоднородности электрического поля, расположения поверхности относительно силовых линий поля и состояния поверхности твердого диэлектрика. 
В однородном поле, когда силовые линии направлены вдоль чистой сухой поверхности твердого диэлектрика (простейшая модель опорного изолятора), средняя напряженность зависит от гигроскопичности диэлектрика и главным образом от влажности воздуха (рис. 6-5). При нормальных условиях и s>0,1 м для фарфора 
У обычных опорных изоляторов с неоднородным полем при малой нормальной составляющей напряженности разрядное напряжение в сухом состоянии зависит от конструкции арматуры и разрядного расстояния h (рис. 6-6). Относительные значения разрядных напряжений для опорных изоляторов сложной конструкции в сухом состоянии представлены на рис. 6-7. 
Рис. 6-5. Зависимость средней напряженности Епер перекрытия фарфоровых цилиндров в однородном поле от относительной влажности воздуха.

Рис. 6-7. Относительные разрядные напряжения в сухом состоянии для сложных опорных изоляторов (D= h).

Рис. 6-6. Разрядные напряжения в сухом состоянии для опорных изоляторов внутренней установки. а - с внешней арматурой; б - с внутренней арматурой.

Разрядное напряжение под дождем опорного изолятора с развитой поверхностью приблизительно соответствует разрядному напряжению воздушного промежутка стержень — плоскость с таким же разрядным расстоянием, поэтому оно может быть оценено по кривым на рис. 6-1. Для приближенных расчетов можно принимать среднюю напряженность под дождем, равной  Зависимости разрядных напряжений в сухом состоянии и под дождем для гладкого фарфорового стержня (без ребер) показаны на рис. 6-8. 
В случае резко неоднородного поля с преобладающей нормальной составляющей напряженности (схема изоляции, соответствующая плоскому конденсатору, показана на рис. 6-9) различают следующие стадии разряда: 
1) корона — разрядный процесс в узкой области у края электрода; возникает при напряжении Uк;
2) скользящий разряд - нитевидные разряды вдоль поверхности твердого диэлектрика, охватывающие значительную часть разрядного расстояния; возникает при напряжении Uск,
3) полное перекрытие - соответствует развитию скользящих разрядов на всю длину разрядного промежутка вдоль поверхности твердого диэлектрика.
Напряжения Uк и Uск могут быть определены по эмпирическим формулам

где d - толщина твердого диэлектрика, м;  - относительная диэлектрическая проницаемость.
Длина канала скользящего разряда lск

где U - амплитудное значение приложенного напряжения, кВ;  - удельная поверхностная емкость, Ф/м2; dU/dt - максимальная скорость изменения приложенного напряжения, кВ/мкс;  - при положительной полярности и  - при отрицательной полярности напряжения.
Напряжение Unep полного перекрытия определяется из условия равенства длины lск скользящего разряда расстоянию между электродами по поверхности твердого диэлектрика.
При расчете изоляции с электродами в виде соосных цилиндров (проходной изолятор) пользуются формулами для плоского конденсатора, но вместо толщины диэлектрика d подставляют величину

где Rн - радиус наружного электрода; Rв - радиус внутреннего электрода.
Для фарфоровых проходных изоляторов с изоляционным расстоянием по фарфору менее 0,3 м средняя напряженность полного перекрытия в сухом состоянии составляет 0,4-0,45 МВдейств/м.











Рис. 6-8. Зависимость разрядного в сухом состоянии Uсух и разрядного под дождем Uд напряжений гладкого без ребер фарфорового стержня от его длины h.

Рис. 6-9. Схема изоляции с резко неоднородным полем и преобладающей нормальной составляющей напряженности поля.

21) Проводниками называются вещества, внутри которых в случае электростатического равновесия электрическое поле равно нулю, т.е. некомпенсированные заряды проводников локализуются в бесконечно тонком поверхностном слое, а если электрическое поле отлично от нуля, то в проводнике возникает электрический ток.
Проводниковые свойства проявляют как твердые тела, так и жидкости, а при соответствующих условиях и газы.
В электротехнике из твердых проводников наиболее широко используются металлы и их сплавы, различные модификации проводящего углерода и композиции на их основе.
Металлические проводниковые материалы подразделяются на материалы высокой проводимости и сплавы высокого сопротивления. Металлы высокой проводимости используются в тех случаях, когда необходимо обеспечить минимальные потери передаваемой по ним электрической энергии, а сплавы высокого сопротивления, наоборот, в тех случаях, когда необходима трансформация электрической энергии в тепловую.
К жидким проводникам относятся расплавы и электролиты. Если при прохождении тока через жидкие проводники на электродах не происходит выделение продуктов электролиза, то они относятся к проводникам первого рода. Расплавы ионных кристаллов и электролиты относятся к проводникам второго рода, так как при прохождении через них тока происходит перенос вещества, а на электродах выделяются продукты электролиза.
Газы и парообразные вещества становятся проводниками лишь в определенных диапазонах значений давления, температуры и напряженности электрического поля. Близка к газам по своему агрегатному состоянию особая проводящая среда — плазма.
К особой группе проводящих материалов относятся сверхпроводники.
Современная теория проводников основывается на постулатах квантовой механики. В рамках этой теории предполагается, что при отсутствии внешних воздействий (электрические и магнитные поля, градиент температуры) система подвижных электрических зарядов в проводниках описывается равновесной функцией распределения. Реакция на любое внешнее воздействие, нарушающее равновесное состояние подвижных зарядов, может быть описана с помощью неравновесной функции распределения, конкретный вид которой зависит от типа воздействия и определяется на основе решения кинетического уравнения Больцмана. Количественная связь между внешним воздействием и реакцией на него подвижных носителей заряда описывается с помощью кинетических коэффициентов, из которых наиболее важную практическую роль играют коэффициент электрической проводимости (выражает связь между напряженностью электрического поля в проводнике и плотностью тока) и коэффициент тепловой проводимости (выражает связь между разностью температур на единичной длине проводника и тепловым потоком). Математически эти явления описываются законами Ома и Фурье:  , где Е — напряженность электрического поля, В/м; J — плотность тока, А/м; ω — плотность теплового потока, Вт/м; ΔT — разница температур на единичном участке длины проводника, К/м; γ — коэффициент электрической проводимости (удельная электрическая проводимость), См/м; χ — коэффициент теплопроводности, Вт/(м · К).
При наличии градиентов температуры и потенциала в одном или нескольких соединенных проводниках возникает ряд термоэлектрических эффектов. Самые важные из них — эффекты Зеебека, Пельтье и Томсона. Если градиент температуры вдоль проводника не равен нулю, то на его концах появляется разность потенциалов, называемая термоэлектрической разностью потенциалов, или термоэлектродвижущей силой. При разности температур в 1 К эта разность потенциалов называется удельной (дифференциальной) термоэлектродвижущей силой. В разомкнутой цепи из нескольких разнородных проводников, находащихся при одинаковой температуре, появляется контактная разность потенциалов, равная алгебраической сумме разностей работ выхода электронов из проводников. При замыкании такой цепи ток не возникает, так как контактные разности потенциалов компенсируют друг друга. Если же поддерживать контакты при разных температурах, возникает отличная от нуля термоэлектродвижущая сила, называемая (при разности температур в 1 К) относительной удельной термоэлектродвижущей силой. По имени физика, изучавшего это явление, оно получило название эффекта Зеебека. Этот эффект, положенный в основу работы промышленных термопар, наиболее изучен. Эффект Пельтье состоит в выделении обратимого тепла на контакте двух различных проводников, когда через контакт проходит ток. Эффект Томсона состоит в выделении обратимой теплоты, когда в проводнике протекает ток при наличии градиента температуры.
При одновременном воздействии на проводник электрического и магнитного полей возникают гальваномагнитные эффекты
Наиболее полно к настоящему времени развита теория металлических проводников. Еще на рубеже XIX—XX вв теоретически и экспериментально было показано, что если металл находится в твердом или жидком состоянии, то часть электронов делокализуется, а возникающие в результате этого положительно заряженные ионы образуют (если металл находится в твердом состоянии) кристаллическую решетку. Взаимодействие положительно заряженного остова кристаллической решетки с делокализованными электронами обеспечивает стабильность и устойчивость структуры металлов, а наличие электронов, принадлежащих не отдельным атомам, а всей их совокупности, обеспечивает высокую электрическую проводимость металлов. Однако наиболее точные расчеты кинетических коэффициентов получены на основе современной теории металлов, в которой совокупность делокализованных электронов рассматривается как «Ферми-жидкость», подчиняющаяся статистике Ферми. Наибольшую практическую ценность представляют результаты теоретического исследования электрической проводимости металлов.
В современной теории электропроводности показано, что в идеальной кристаллической решетке электрический или тепловой поток, однажды возникнув, поддерживался бы бесконечно долго, т.е. делокализованные электроны создавали бы бесконечную проводимость, а время релаксации (среднее время свободного пробега электронов) оказалось бы бесконечным. Тот факт, что удельная электрическая проводимость конечна, обусловлен нерегулярностями решетки. Эти нерегулярности делятся на две основные категории. Одни связаны с тепловыми колебаниями, другие являются статистическими. Тепловые колебания решетки нарушают идеальную периодичность кристаллов. Искажения решетки рассеивают электроны, ограничивая длину свободного пробега конечным значением. С уменьшением температуры интенсивность рассеивания уменьшается, и так как ограничения, налагаемые статистикой Ферми, препятствуют рассеянию на нулевых колебаниях, то в области температур, близких к абсолютному нулю, проводимость ограничивается статическими дефектами. Обычно существует целый ряд статических дефектов. Вакансии, междуузельные атомы и примеси замещения составляют группу точечных дефектов. Дислокации являются линейными дефектами. Существуют и двумерные нерегулярности, такие как дефекты упаковки и границы двойников и кристаллитов.
В итоге теория предсказывает, а эксперимент подтверждает, что в области низких температур (меньших температуры Дебая Θ) удельная электропроводность γ пропорциональна T-5, а при T>Θ γ ~ T-1, где T — температура перехода.
В практике проведения электротехнических расчетов часто используется не удельная проводимость, а величина, ей обратная, ρ(Ом·м). Учитывая это, ρ~Т при T>Θ. Для большинства металлов температура Дебая лежит в области от 100 до 400 К.
В технических расчетах влияние температуры на сопротивление характеризуют температурным коэффициентом удельного сопротивления  .
В настоящем справочнике приводится средняя величина α, которая позволяет приближенно определить ρпри произвольной температуре  . где ρ1 — удельное сопротивление при температуре T1.
22) К проводниковым материалам с высокой проводимостью относятся медь, алюминий и некоторые сплавы (латунь, фосфористая бронза и др.). Они широко используются для изготовления катушек электрических машин, аппаратов и приборов. К таким материалам предъявляются требования возможно меньшего удельного сопротивления и возможно большей механической прочности. Для различных случаев применения эти требования в той или иной степени уточняются. Например, для катушек машин и аппаратов выгоднее иметь меньшее удельное сопротивление даже за счет некоторого снижения механической прочности. Для воздушных же проводов контактной сети и линий электропередачи важно иметь определенную механическую прочность на разрыв.
Наименьшим удельным сопротивлением обладает чистый металл. Любые примеси повышают удельное сопротивление. Примесь другого металла, имеющего меньшее удельное сопротивление, чем основной, повышает его сопротивление. Это объясняется искажением кристаллической решетки основного металла даже небольшим количеством примеси. Кристаллическая решетка металлов искажается не только введением примесей, но и в результате механических деформаций. В связи с этим обработка металла, приводящая к пластической деформации, вызывает увеличение его удельного сопротивления. В частности, это имеет место в процессе изготовления проводов при прокатке и волочении.
Медь и латунь применяют для изготовления проводов и различных токопроводящих деталей электрических машин и аппаратов. Медные провода и шины получают прокаткой и протяжкой, при этом медь приобретает высокую механическую прочность и твердость (медь марки МП). Такую твердотянутую медь используют для изготовления коллекторных пластин, неизолированных проводов, распределительных шин и пр. При термической обработке твердотянутой меди (отжиге при температуре 330—350 °С) получают мягкую медь марки ММ, обладающую большой гибкостью и способностью сильно вытягиваться; электропроводность ее также увеличивается. Мягкую медь используют для изготовления изолированных проводов, кабелей и пр.
В качестве проводниковых материалов применяют также различные бронзы, представляющие собой сплавы меди с другими металлами. Все бронзы имеют не только более высокую механическую прочность, чем медь, но и большее удельное сопротивление. Для изготовления контактных проводов и коллекторных пластин применяют преимущественно кадмиевые бронзы, для пружин, щеткодержателей, скользящих контактов, ножей рубильников — бериллиевые бронзы. Латунь (сплав меди с цинком) имеет также по сравнению с медью высокую механическую прочность, прочность против истирания, но вместе с тем и значительно более высокое удельное сопротивление. Латунь хорошо штампуется, вытягивается, паяется и сваривается.
Вторым по значению в электротехнике проводниковым материалом является алюминий. Из него изготовляют провода, некоторые детали электрических машин и аппаратов. Так же, как и медь, он при протяжке и других видах холодной обработки получается довольно твердым, а после отжига становится мягким. Плотность алюминия около 2,6 г/см3, примерно в 3,5 раза меньше меди (ее плотность 8,9 г/см ). Для увеличения прочности, и,.улучшения механических свойств к алюминию иногда прибавляют медь, магний, марганец и кремний. Таким путем получают различные алюминиевые сплавы — силумин, дюралюминий и пр.
По твердости различают две марки алюминия: AT — алюминий твердый неотожженный и AM — алюминий мягкий отожженный. Соединение алюминиевых проводов и других деталей производят обычно сваркой или заклепками, так как из-за высокой температуры плавления окиси алюминия, покрывающей поверхность алюминиевых деталей (примерно 2000 °С), и быстрого окисления зачищенной поверхности пайка алюминия обычным способом затруднена.
сверхпроводники́
вещества, переходящие в сверхпроводящее состояние при температурах ниже критической (Тк). По магнитным свойствам различают сверхпроводники 1-го и 2-го рода. К сверхпроводникам относятся около половины металлов (например, Al, Тк = 1,2 К; Pb, Tк = 7,2 К), несколько сотен сплавов (например, Ni—Ti, Тк ≈ 9,8 К), в том числе интерметаллические соединения (например, Nb3Ge, Тк ≈ 23 К), многие полупроводники (например, GeTe, Тк = 0,17 К). В 1980—87 открыты высокотемпературные оксидные сверхпроводники (VBa2Cu3О7 и др.) с Тксверхпроводники́100 К.

СВЕРХПРОВОДНИКИ
СВЕРХПРОВОДНИКИ́, вещества, переходящие в сверхпроводящее состояние при температурах ниже критической (Тк) (см. Сверхпроводимость (см. СВЕРХПРОВОДИМОСТЬ)). Явление сверхпроводимости при криогенных температурах достаточно широко распространено в природе. Сверхпроводимостью обладают 26 металлов, в сверхпроводящее состояние могут переходить также несколько сот металлических сплавов и соединений и некоторые сильно легированные полупроводники. Существуют сверхпроводящие сплавы, в которых отдельные компоненты или даже все компоненты сплава сами по себе не являются сверхпроводниками. 
В основе теоретического объяснения явления сверхпроводимости заложено представление об образовании электронных куперовских пар (см. Купера эффект (см. КУПЕРА ЭФФЕКТ)). В сверхпроводнике взаимодействие электронов друг с другом происходит в результате обменного фононного взаимодействия через кристаллическую рещетку. Это означает, что сверхпроводимость должна наблюдаться у веществ, характеризующихся сильным взаимодействием электронов проводимости с ионами решетки кристалла и поэтому являющимися относительно плохими проводниками в обычных условиях Если взаимодействие электронов с решеткой слабое, (вещество — хороший проводник), то перехода в сверхпроводящее состояние зарегистрировать не удается. (медь, серебро, золото). Малое сопротивление этих материалов указывает на слабое взаимодействие электронов с решеткой. Такое слабое взаимодействие не создает вблизи абсолютного нуля достаточного межэлектронного притяжения, способного преодолеть кулоновское отталкивание. Поэтому и не происходит их переход в сверхпроводящее состояние. 
Сверхпроводимость никогда не наблюдается в системах, в которых существует ферромагнетизм (см. ФЕРРОМАГНЕТИЗМ) или антиферромагнетизм (см. АНТИФЕРРОМАГНЕТИЗМ). Образованию сверхпроводящего состояния в полупроводниках и диэлектриках препятствует малая концентрация свободных электронов. Однако в материалах с большой диэлектрической проницаемостью силы кулоновского отталкивания между электронами в значительной мере ослаблены. Поэтому некоторые из них также проявляют свойства сверхпроводников при низких температурах. Примером может служить титанат стронция SrTiO3, относящийся к группе сегнетоэлектриков (см. СЕГНЕТОЭЛЕКТРИКИ). Ряд полупроводников можно перевести в сверхпроводящее состояние добавкой большой концентрации легирующих примесей. 
В зависимости от поведения сверхпроводников в магнитном поле различают сверхпроводники I и II рода. 



Достарыңызбен бөлісу:
1   ...   9   10   11   12   13   14   15   16   ...   20




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет