6. Теории слуха. Физиологические особенности слухового анализатора. Резонансная теория Гельмгольца. Согласно этой теории, в улитке возникают явления механического резонанса в отношении звуковых колебаний различных частот. По аналогии со струнными инструментами звуки высокой частоты приводят в колебательное движение участок основной мембраны с короткими волокнами у основания улитки, а звуки низкой частоты — в колебательное движение участок мембраны с длинными волокнами у верхушки улитки. При подаче и восприятии сложных звуков одновременно начинает колебаться несколько участков мембраны. Чувствительные клетки спирального органа воспринимают эти колебания и передают по нерву слуховым центрам. На основании изучения теории Гельмгольца можно сделать три вывода: 1) улитка является тем звеном слухового анализатора, где возникает первичный анализ звуков; 2) каждому простому звуку присущ определенный участок на основной мембране; 3) низкие звуки приводят в колебательное движение участки основной мембраны, расположенные у верхушки улитки, а высокие — у ее основания.
Гидродинамическая теория. Исследования последнего времени показывают, что под влиянием звуков в лимфе улитки происходят сложные гидродинамические процессы. Это послужило основанием для создания Бекеши и Флетчером гидродинамической гипотезы слуха, которая значительно расширяет резонансную теорию Гельмгольца.
Прямое изучение механических свойств основной мембраны показало, что ей не свойственна высокая механическая избирательность. Звуковые волны различных частот вызывают движения основной мембраны на довольно больших ее участках. Прямые наблюдения с регистрацией колебаний основной мембраны показали, что звуки определенной высоты вызывают на основной мембране «бегущую волну». Гребню этой волны соответствует большее смещение основной мембраны на одном из ее участков, локализация которого зависит от частоты звуковых колебаний. По мере повышения звука прогиб основной мембраны смещается. Наиболее низкие звуки приводят к прогибанию мембраны у верхушки улитки. Основная мембрана смещается на гребне «бегущей волны» и, колеблясь, вызывает деформацию сдвига в волосковых клетках спирального органа над этим участком мембраны.
Таким образом, была установлена роль улитки как органа, трансформирующего звуковые колебания в электрическую энергию. В последние годы оказалось возможным отводить токи, возникающие при воздействии звука, от окна улитки к телефону; при этом телефон с достаточной четкостью воспроизводит эти звуки. Такие токи получили название микрофонных потенциалов улитки. Впервые в нашей стране регистрацию микрофонных потенциалов улитки у человека произвел Т. В. Гершуни. Использование микроэлектродов позволило получать микрофонные потенциалы от любого участка основной мембраны, причем подтвердилось пространственное расположение восприятия частот на мембране, так как наибольшие микрофонные потенциалы получаются для каждой частоты с определенного участка мембраны. Ряд экспериментальных исследований позволил уточнить механизм трансформации звука. Нашли свое обоснование и процессы генерации электрических токов. Оказалось, что механизм генерирования электрической энергии присущ волосковым клеткам кортиева органа. Дальнейшее распространение раздражения к коре мозга происходит в виде импульсов, возникающих в волокнах слухового нерва, ядрах и слуховых путях.
В последние годы установлена тесная зависимость возникновения микрофонных потенциалов от электролитного состава ушной лимфы. В настоящее время доказано, что в тех случаях, когда волосковые клетки и безмякотные окончания слухового нерва омываются жидкостью, в которой концентрация натрия низкая, а калия — высокая, микрофонные потенциалы улитки, а следовательно, и процессы нервного возбуждения не могут иметь места.
Очень важен для понимания механизма трансформации звуковой энергий в нервный процесс вопрос о происхождении и значении микрофонных потенциалов. Основным источником микрофонных потенциалов являются волосковые клетки, так как в случае их отсутствия даже при неповрежденных мембранах микрофонные потенциалы почти полностью пропадают (Дэвис, В. Ф. Ундриц).
Таким образом, под влиянием деформации волосков рецепторных клеток при давлении покровной (текториальная) мембраны освобождается электрическая энергия синхронно со звуковыми колебаниями — эти потенциалы в виде микрофонных потенциалов отводятся наилучшим образом от самых волосковых клеток, а также от окна улитки благодаря электропроводимости ушной лимфы. Биотоки являются раздражителями тончайших окончаний веточек кохлеарного нерва, оплетающих волосковые клетки. Эти окончания имеют характер синапсов и возбуждение передается при помощи медиаторов (ацетилхолин). Следовательно, спиральный орган работает как детектор, отвечая только на определенный вид энергии (звук), и как трансформатор, превращая звуковую энергию в процесс нервного возбуждения.