3. тендеуін жүйесін шешіңіз.
Шешуі. Теңдеудің тікелей анықтау мүмкін еместіктен, анықталу облысын табайық. Ол үшін cos2πх-1≥ 0 , яғни cos2πх≥ 1 теңсіздігінің шешімдерін анықтау керек. Соңғы теңсіздіктен cos2πх=1 болатындығы айқын. Сонымен, анықталу облысы х=k, k∈Z . Табылған мәндерді берілген теңдеуге қойып, оны қанағаттандыратындарын анықтайық. Сонда cos(k2+k-6) =1 теңдеуін аламыз. Осыдан (k2+k-6) = 2πn, мұндағы . n, k∈Z Соңғы теңдеудің сол жағындағы өрнек бүтін сан, ал оң жағындағысы бүтін емес екендігін көреміз. Сондықтан теңдік тек қана n = 0 болғанда орындалуы мүмкін.
Енді (k2+k-6) = 0 теңдеуін шешеміз. Оның түбірлері k = 2 және k = -3 . Демек, тендеудің шешіндері x = 2 және x = -3 .
4. теңдеуін шешіңіз.
Шешуі.
Теңсіздіктер жүйесі деп қарастырсақ, қате жіберген болар едік. Себебі теңдеудің оң жақ бөлігі ескерілмей отыр. Ол нольден үлкен, сондықтан теңдеудің анықталу облысы келесі теңсіздіктер жүйесінің шешімі болады:
Демек, теңдеудің шешімі жоқ.
Достарыңызбен бөлісу: |