Дайте определение
1 - методы оптимизации
2 - теория игр
3 - оптимальное решение
Оптимизация — в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.
Теорию и методы решения задачи оптимизации изучает математическое программирование.
Математическое программирование — это область математики, разрабатывающая теорию, численные методы решения многомерных задач с ограничениями. В отличие от классической математики, математическое программирование занимается математическими методами решения задач нахождения наилучших вариантов из всех возможных
]
Классификация методов оптимизации
Общая запись задач оптимизации задаёт большое разнообразие их классов. От класса задачи зависит подбор метода (эффективность её решения). Классификацию задач определяют: целевая функция и допустимая область (задаётся системой неравенств и равенств или более сложным алгоритмом).
Методы оптимизации классифицируют в соответствии с задачами оптимизации:
Локальные методы: сходятся к какому-нибудь локальному экстремуму целевой функции. В случае унимодальной целевой функции, этот экстремум единственен, и будет глобальным максимумом/минимумом.
Глобальные методы: имеют дело с многоэкстремальными целевыми функциями. При глобальном поиске основной задачей является выявление тенденций глобального поведения целевой функции.
Существующие в настоящее время методы поиска можно разбить на три большие группы:
детерминированные;
случайные (стохастические);
комбинированные.
По критерию размерности допустимого множества, методы оптимизации делят на методы одномерной оптимизации и методы многомерной оптимизации.
По виду целевой функции и допустимого множества, задачи оптимизации и методы их решения можно разделить на следующие классы:
Задачи оптимизации, в которых целевая функция f ( x → ) {\displaystyle f({\vec {x}})} и ограничения g i ( x → ) , i = 1 , … , m {\displaystyle g_{i}({\vec {x}}),\;i=1,\ldots ,m} являются линейными функциями, разрешаются так называемыми методами линейного программирования.
В противном случае имеют дело с задачей нелинейного программирования и применяют соответствующие методы. В свою очередь из них выделяют две частные задачи:
если f ( x → ) {\displaystyle f({\vec {x}})} и g i ( x → ) , i = 1 , … , m {\displaystyle g_{i}({\vec {x}}),\;i=1,\ldots ,m} — выпуклые функции, то такую задачу называют задачей выпуклого программирования;
если X ⊂ Z {\displaystyle \mathbb {X} \subset \mathbb {Z} } , то имеют дело с задачей целочисленного (дискретного) программирования.
По требованиям к гладкости и наличию у целевой функции частных производных, их также можно разделить на:
прямые методы, требующие только вычислений целевой функции в точках приближений;
методы первого порядка: требуют вычисления первых частных производных функции;
методы второго порядка: требуют вычисления вторых частных производных, то есть гессиана целевой функции.
Помимо того, оптимизационные методы делятся на следующие группы:
аналитические методы (например, метод множителей Лагранжа и условия Каруша — Куна — Таккера);
численные методы;
графические методы.
В зависимости от природы множества X задачи математического программирования классифицируются как:
задачи дискретного программирования (или комбинаторной оптимизации) — если X конечно или счётно;
задачи целочисленного программирования — если X является подмножеством множества целых чисел;
задачи нелинейного программирования, если ограничения или целевая функция содержат нелинейные функции и X является подмножеством конечномерного векторного пространства.
Если же все ограничения и целевая функция содержат лишь линейные функции, то это — задача линейного программирования.
Кроме того, разделами математического программирования являются параметрическое программирование, динамическое программирование и стохастическое программирование.
Математическое программирование используется при решении оптимизационных задач исследования операций.
Способ нахождения экстремума полностью определяется классом задачи. Но перед тем, как получить математическую модель, нужно выполнить 4 этапа моделирования:
Определение границ системы оптимизации
Отбрасываем те связи объекта оптимизации с внешним миром, которые не могут сильно повлиять на результат оптимизации, а, точнее, те, без которых решение упрощается
Выбор управляемых переменных
«Замораживаем» значения некоторых переменных (неуправляемые переменные). Другие оставляем принимать любые значения из области допустимых решений (управляемые переменные)
Определение ограничений на управляемые переменные
… (равенства и/или неравенства)
Выбор числового критерия оптимизации (например, показателя эффективности)
Основные понятия теории игр
Определения. Классификация игр. Решение игр в чистых и смешанных стратегиях. Теорема Неймана
Обычно математики для изучения конфликтных ситуаций. Позволяющий выработать оптимальные правила поведения каждой стороны.В экономике, например, оказался недостаточным аппарат математического анализа, занимающийся определением экстремумов функций. Появилась необходимость изучения так называемых оптимальных минимаксных и максиминных решений. Следовательно, теорию игр можно рассматривать как новый раздел оптимизационного подхода, позволяющего решать новые задачи при принятии решений.
Игра- упрощенная формализованная модель реальной конфликтной ситуации. Математически формализация означает, что выработаны определенные правила действия сторон в процессе игры: варианты действия сторон; исход игры при данном варианте действия; объем информации каждой стороны о поведении всех других сторон.
Выигрыш или проигрыш сторон оценивается численно, другие случаи в теории игр не рассматриваются, хотя не всякий выигрыш в действительности можно оценивать количественно.
Игрок - одна из сторон в игровой ситуации. Стратегия игрока - его правила действия в каждой из возможных ситуаций игры. Существуют игровые системы управления, если процесс управления в них рассматривается как игра.
Платежная матрица(матрица эффективности, матрица игры) включает все значения выигрышей (в конечной игре). Пусть игрок 1 имеет стратегий , а игрок 2 – стратегий . Игра может быть названа игрой . Представим матрицу эффективности игры двух лиц с нулевой суммой.
В данной матрице элементы – значения выигрышей игрока 1 – могут означать и математическое ожидание выигрыша (среднее значение), если выигрыш является случайной величиной. Величины – соответственно минимальные значения элементов , по строкам и максимальные - по столбцам.
Количество игроков. Если в игре участвуют две стороны, то ее называют игрой двух лиц. Если число сторон больше двух, ее относят к игре п игроков. Наибольший интерес вызывают игры двух лиц.
Классификация игр.
Количество стратегий игры. По этому критерию игры делятся на конечные и бесконечные. В конечной игре каждый из игроков имеет конечное число возможных стратегий. Если хотя бы один из игроков имеет бесконечное число возможных стратегий, игра является бесконечной.
Взаимоотношения сторон. Согласно данному критерию игры делятся на кооперативные, коалиционные и бескоалиционные. Если игроки не имеют право вступать в соглашения, образовывать коалиции, то такая игра относится к бескоалиционным; если игроки могут вступать в соглашения, создавать коалиции - коалиционной. Кооперативная игра - это игра, в которой заранее определены коалиции.
Характер выигрышей. Этот критерий позволяет классифицировать игры снулевой и с ненулевой суммой. Игра с нулевой суммой предусматривает условие: «сумма выигрышей всех игроков в каждой партии равна нулю». Игры двух игроков с нулевой суммой относят к классу антагонистических. Естественно, выигрыш одного игрока при этом равен проигрышу другого. Примерами игр с нулевой суммой служат многие экономические задачи. В них общий капитал всех игроков перераспределяется между игроками, но не меняется. К играм с ненулевой суммой также можно отнести большое количество экономических задач. Например, в результате торговых взаимоотношений стран, участвующих в игре, все участники могут оказаться в выигрыше. Игра, в которой нужно вносить взнос за право участия в ней, является игрой с ненулевой суммой.
Вид функции выигрышей. По этому критерию игры подразделяются на:
Матричная игра - конечная игра двух игроков с нулевой суммой. В общем случае ее платежная матрица является прямоугольной (см. табл. 2.1). Номер строки матрицы соответствует номеру стратегии, применяемой игроком 1. Номер столбца соответствует номеру стратегии игрока 2. Выигрыш игрока 1 является элементом матрицы. Выигрыш игрока 2 равен проигрышу игрока 1. Как показано в приложении, матричные игры всегда имеют решения в смешанных стратегиях. Они могут быть решены методами линейного программирования.
Биматричная игра- конечная игра двух игроков с ненулевой суммой. Выигрыши каждого игрока задаются своей матрицей, в которой строка соответствует стратегии игрока 1, а столбец — стратегии игрока 2. Однако элемент первой матрицы показывает выигрыш игрока 1, а элемент второй матрицы - выигрыш игрока 2. Для биматричных игр так же, как и для матричных, разработана теория оптимального поведения игроков.
Если функция выигрышей каждого игрока в зависимости от стратегий является непрерывной, игра считается непрерывной. Если функция выигрышей выпуклая, то и игра - выпуклая.
Если функция выигрышей может быть разделена на сумму произведений функций одного аргумента; то игра относится к сепарабельной.
Количество ходов. Согласно этому критерию игры можно разделить на одношаговые и многошаговые. Одношаговые игрызаканчиваются после одного хода каждого игрока. Так, в матричной игре после одного хода каждого из игроков происходит распределение выигрышей. Многошаговые игры бывают позиционными, стохастическими, дифференциальными и др.
Информированность сторон. По данному критерию различают игры с полной и неполной информацией. Если каждый игрок на каждом ходу игры знает все ранее примененные другими игроками на предыдущих ходах стратегии, такая игра определяется какигра с полной информацией. Если игроку не все стратегии предыдущих ходов других игроков известны, то игра классифицируетсякак игра с неполной информацией. Мы далее убедимся, что игра с полной информацией имеет решение. Решением будет седловая точкапри чистых стратегиях.
Степень неполноты и формации. По этому критерию игры подразделяются на статистические (в условиях частичной неопределенности) и стратегические (в условиях полной неопределенности). Игры с природой часто относят к статистическим играм. В статистической игре имеется возможность получения информации на основе статистического эксперимента, при котором вычисляется или оценивается распределение вероятностей состояний (стратегий) природы. С теорией статистических игр тесно связана теория принятия экономических решений.
Минимакс. Максимин.
Рассмотрим матричную игру, представленную матрицей выигрышей где число строк , а число столбцов (см. табл. выше). Применим принцип получения максимального гарантированного результата при наихудших условиях. Игрок 1 стремится принять такую стратегию, которая должна обеспечить максимальный проигрыш игрока 2. Соответственно игрок 2 стремится принять стратегию, обеспечивающую минимальный выигрыш игрока 1. Рассмотрим оба этих подхода.
Подход игрока 1.Он должен получить максимальный гарантированный результат при наихудших условиях. Значит, при выборе отвечающей этим условиям своей чистой стратегии он должен выбрать гарантированный результат в наихудших условиях, т.е. наименьшее значение своего выигрыша а,. Обозначим: . Чтобы этот гарантированный эффект в наихудших условиях был максимальным, нужно из всех а, выбрать наибольшее значение. Обозначим его α и назовем чистой нижней ценой игры(«максимин»): . Таким образом, максиминной стратегии отвечает строка матрицы, которой соответствует элемент . Какие бы стратегии ни применял игрок 2, игрок 1 максиминной чистой стратегией гарантировал себе выигрыш, не меньший, чем . Таково оптимальное поведение игрока 1.
Подход игрока 2. Своими оптимальными стратегиями он стремится уменьшить выигрыш игрока 1, поэтому при каждой j-й чистой стратегии он отыскивает величину своего максимального проигрыша: . в каждом j-м столбце, т.е. определяет максимальный выигрыш игрока 1, если игрок 2 применит j-ю чистую стратегию. Из всех своих nj-х чистых стратегий он отыскивает такую, при которой игрок 1 получит минимальный выигрыш, т.е. определяет чистуюверхнюю цену игры(«минимакс»): . Чистая верхняя цена игры показывает, какой максимальный выигрыш может гарантировать игрок 1, применяя свои чистые стратегии, - выигрыш, не меньший, чем a. Игрок 2 за счет указанного выше выбора своих чистых стратегий не допустит, чтобы игрок 1 мог получить выигрыш, больший, чем b. Таким образом, минимаксная стратегия отображается столбцом платежной матрицы, в котором находится элемент b (см. табл. 2.1). Она является оптимальной чистой гарантирующей стратегией игрока 2, если он ничего не знает о действиях игрока 1.
Чистая цена игры v - цена данной игры, если нижняя и верхняя ее цены совпадают: . В этом случае игра называется игрой с седловой точкой.
Достарыңызбен бөлісу: |