δ1 < δ3 < … <
δ2 > δ4 > … >
теңсіздіктері шығады.
Жалпы жағдайда кез – келген α1 иррационал санын ақырсыз бөлшек тізбегіне жіктеу берілсін:
Онда лайықты бөлшектер үшін келесі теңсіздік орынды:
δ1 < δ3 < … < δ2k+1 < … < α < …< δ2k < …< δ4 < δ2 (3)
δk лайықты бөлшегін
түрінде жазайық.
Алдыңғы тақырыпта ақырлы бөлшек тізбектері үшін қолданған (1.3 - 6) қатынасы:
P k = Pk-1 q k + P k-2 , Q k = Qk-1 q k + Q k-2
ақырсыз бөлшек тізбектері үшін де сақталады. Біз еш жерде бөлшек тізбегі ақырлы болады дегенді пайдаланбаған едік, сондықтан көршілес лайықты бөлшектер арасындағы (1.3 - 7) қатынасы да сақталады:
-= (4)
(4) қатынастың дербес жағдайы
=
Енді мына теңсіздіктің орынды екенін көрсетейік:
0
Достарыңызбен бөлісу: |