Электролит ерітінділерінің электр өткізгіштігі. Кондуктометрия. Фармацевтикалық талдауда қолдану



Дата29.12.2021
өлшемі18,65 Kb.
#106233
түріҚұрамы
Байланысты:
Электролит ерітінділерінің электр өткізгіштігі
Электролит ерітінділерінің электр өткізгіштігі, Электролит ерітінділерінің электр өткізгіштігі, ПАХТ соөж

Электролит ерітінділерінің электр өткізгіштігі. Кондуктометрия. Фармацевтикалық талдауда қолдану.

Электрохимия — химиялық процестер мен электрлік құбылыстар арасындағы байланысты зерттейтін физикалық химияның бір тарауы. Сондай-ақ бұл тарауда еріген және балқыған электролиттердің де касиеттері қарастырылады.

Электролит ерітінділер деп қозғалыстағы иондардық көмегімен электрлік ток өткізетін ерітінділерді айтады. Сол сияқты электрохимия құрамына электролиз процестері мен оларға кері жүретін гальваникалық элементтердегі процестер де енеді. Мұндағы бірінші және екінші процестерде электролиттер ерітінділері (балқыма) мен көбіне металл пластинкасынан (жолақша) жасалған электродтардан тұрады. Әдетте, ерітінділердің немесе ерітінді мен электродтардың шекаралары белгілі бір себептермен электрлік зарядталған болып келеді. Сондықтан да электрохимияға австралия ғалымы Дж. Бокрис берген “электрохимия зарядталған беттер мен электролиттердің қасиеттерін зерттейді” деген ғылыми анықтаманы еске түсірген артық болмас.

Электрохимияның пайда болуы Л. Гальвани және А. Вольта сияқты ғалымдардың есімдерімен тығыз байланысты. Бақа бұлшық етінің қозғалысын зерттеу кезінде, Гальвани күтпеген жерден металл пластинкасы мен баканын, табанынан тұратын электр тізбегін алады. Ол өз тәжірибесіне сүйеніп, электр тоғының пайда болуын тек тірі организммен байланыстырады. Ал, 1799 жылы ғылым тарихында бірінші болып Вольт гальваникалық злементтердің батареясын жасайды. Мұны сол кезде вольттық электрлік бағана дейтін. Әрине, бұл құбылыс Гальванидің “жаны бар электр ток” атты болжамын жоққа шығарып, бұл салада жаңа ұғым, тың бағыт тудырды. Ол кездегі бірінші гальваникалық элементтер аралары электролит ерітінділеріне малынған матамен бөлінген мыс және мырыш пластинкаларынан тұратын. 1834 жылы М. Фарадей электролиздің негізгі екі заңын ашып, тұжырымдады. Бұл электрохимия саласындағы аса үлкен заңдылык болды. Фарадейдің электролиз заңына сүйеніп, элбктрлік құбылыс пен материя арасындағы тығыз байланысты тура көрсетті және Стоней ең кішкене элементар электрлік зарядтың өлшемі ретінде 1891 жылы “электрон” деген терминді енгізді.

Электрохимия С. Аррениус, Ф. Кольрауш, В. Оствальд және басқа да көптеген ғалымдардың түбегейлі еңбектерінің негізінде, тек XIX ғасырдың соңында ғана физикалық химияның бір саласына айналды.

Электролит ерітінділері. Еріген кезде еріткішпен әрекеттесіп, иондарға диссоциацияланып, ерітіндіге ток өткізгіштік кабілет беретін заттарды электролиттер дейді. Кейде электролиттер ионогенді және ионоферлі болып екіге бөлінеді. Ионогенді электролиттер таза күйінде диссоциацияланбаған молекулалардан тұрады. Бұл тектес электролиттерге сірке қышқылы, тұз қышқылы және тағы басқалар мысал болады. Ал, ионоферлі электролиттерге ешбір еріткіште ерімесе де, таза қалпында-ақ өз құрамында диссоциацияланған иондары бар қосылыстар жатады. Бұл топқа көптеген тұздар мысал болады. Егер электролит толық диссоциацияланса және осы кездегі әрбір молекула v иондарға ыдыраса, онда ерітіндідегі иондар саны Nv болады, мұндағы N — электролит молекуласының саны. Егер де барлық молекула диссоциацияланбастан, оның а бөлігі ғана ыдыраса, онда ерітіндідегі бөлшектер саны N электролитіндегіден і есе аз болады, мұндағы і – изотоникалық коэффициент, кейде оны Вант-Гофф коэффициенті де дейді:

Диссоциациялану дәрежесі иондарға ыдыраған (n) молекулалардың электролиттегі барлық молекулаларға (N) қатынасымен анықталады:

Бұдан электролиттердің аномальдік, коллигативтік қасиеттерге бейім екендігі байқалады. Егер электролит емес ерітінділердің коллигативті қасиеттерін өрнектейтін теңдеуге изотоникалық коэффициентті енгізсе, онда тәжірибе кезінде және есептеу арқылы алынған шамаларды теңеуге болады.

Электролиттер диссоциациялану қабілетіне орай шартты екі топқа бөлінеді: әлсіз және күшті электролиттер.

Әлсіз электролиттер. Көптеген қосылыстарды еріткенде олардың молекулалары түгелдей диссоциацияланбайды, яғни иондарға ыдырамайды. Оларға органикалык қышқылдардың басым көпші-лігін, фенолды, аммиакты және аминдерді, көмір қышқылын, сынап тузы сияқты кейбір тұздарды, тағы басқаларды жаткызуға болады. Әдетте электролиттердің күшін диссоциациялану дәрежесі (а) арқылы сипаттайды. Берілген электролиттің диссоциациялану дәрежесі а<0,3 болса, ол әлсіз, ал а>0,3 болса күшті электролит делінеді. Диссоциациялану дәрежесі концентрация сияқты көптеген өлшемдерге тәуелді болады. Демек, оны диссоциация константасы арқылы өрнектеу ыңғайлы.

Бұл өрнекті Оствальдтың сұйылту заңы (1888) дейді.

К=α2С/1- α

Бұдан берілген концентрациядағы диссоциациялану дәрежесі жоғарылаған сайын, диссоциация константасынын, артатыны анық көрінеді. Демек, электролиттің күшін диссоциация константасы арқылы оңтайлы өлшеуге болады. Кез келген теңдік константасы сияқты диссоциация константасы да температураға тәуелді шама. Олай болса, электролит күші температураға сәйкес өзгереді. Осы жоғарыда алынған өрнек бойынша, берілген концентрациядағы электролиттің диссоциациялану дәрежесінің шамасын пайдаланып, диссоциация константасын анықтайды. Сол сияқты берілген концентрациядағы диссоциация константасын пайдаланып, кез келген концентрациядағы диссоциациялану дәрежесін есептеп шығарады. (96) өрнек тек бинарлы электролиттер үшін екенін ескеріп, басқа күрделі электролиттер үшін біршама түрлендіріп, өрнекті концентрация мен диссоциациялану дәрежесі сияқты айнымалы шамалар арқылы сипаттау керек екенін айтқан жөн.

Күшті электролиттер. Қөптеген заттар ерігенде молекуласының басым көпшілігі иондарға ыдырайды, яғни диссоциацияланады. Олардың қатарына күшті қышкылдар мен күшті негіздер және біраз тұздар жатады. Күшті электролиттердің ерітінділерінде Оствальдтың сұйылту заңынан едәуір ауытқушылық байқалады. Әуелде бұл құбылыс аномальді деп есептелді. Әйтсе де, мұны нақтылы тәжірибелер арқылы зерттеу, күшті электролиттердің толық диссоциацияланатының көрсетті. Аса жоғары емес, шамамен орташа не одан да төменгі концентрациядағы электролит ерітінділерде тек ион түрінде болады. Демек, күшті электролит ерітіндідегі иондар концентрациясы осындай әлсіз электролитпен салыстырғанда біраз жоғары болады және дәл осының салдарынан ион-дардың ара қашықтығы жақындай түседі де иондардың өзара әрекеттесуі, әсерлесуі күшейеді.

Активтілік. Электролит ерітінділерін термодинамикалық тұрғыдан сипаттап, өрнектегенде, ғылымға 1908 жылы Г. Льюис енгізген активтілік әдісі кең қолданылады. Иондар арасындағы электр статистикалық әрекеттесу нәтижесінде иондардың өзара байланысуы пайда болады, мысалы олардың қозғалуы баяулайды және әлсіз электролиттердегі диссоциациялану дәрежесінің азаятыны сияқты ерітінділердің де кейбір қасиеттері өзгереді. Сондықтан концентрация орнына активтілік қолданылады, кейде оны көзге көрініп, өлшеуге келе бермейтін немесе әсерлі концентрация деп те айтады. Термодинамикадағы концентрацияны активтілікпен алмастыру арқылы идеал жүйлерге  арналған теңдеулерді кәдімгі ерітінділерге қолдануға болады.

КОНДУКТОМЕТРИЯ Электролиттердің концентрациясын кондуктометрлік әдіспен анықтау талданатын ерітіндінің электр өткізгіштігін өлшеуге негізделген. Кондуктометрия - ең қарапайым және талдап сұрыптаудын электрохимиялық әдісі. Кондуктометрлік әдістердің барлығы жылдамдығымен, өлшеуіш аспаптарының оңай табылуымен, жұмысының ыңғайлылығымен, қанағаттанарлық дәлдігімен, өндірістік, технологиялық және лабораториялык жағдайларда талдауды автоматты түрде, әрі қашықтықған жүргізу мүмкіндігімен сипатталады. Тікелей кондуктометрлік анықтаудын қателігі %. Ал белгілі бір арнайы жағдайды сақтаганда талдау қателігі 0.2 %-ке дейін азаяды. Кондуктометрлік ұяшықтарды термостатсыз өлшегенде, бұл қателіктер 3 %-ке артады, өйткені температураның бір градусқа жоғарылауы электр өткізгіштікті 2 не 3 проценттей өзгертеді. Демек, ерітінділерді термостаттау кондуктометрлік талдау әдісінің дәлдігін арттырады.

КОНДУКТОМЕТРИЯНЫҢ ТЕОРИЯЛЫҚ НЕГІЗІ Электролит ерітінділерінің электр өткізгіштігі - осы ерігіндінің кедергісіне кері шама, әрі ол сыртқы электр өрісінің әсерінен еріген заттыіі электр тогын өткізу қабілетіне байланысты. Ендеше бүл эдіс электрдің негізгі заңдарының бірі Ом заңына бағынады: I = Е / R мұндағы I - ток күші, Е - потенциал айырымы, R - кедергі. Кондукгометрияда өлшенетін шама ерітіндінің кедергісі немесе электр өткізгіштігі болуы мүмкін. Электролит ерітіндісі - үш өлшемді өткізгіш. Ал кез келген ерітінді кедергісінің шамасы ұяшықтың құрамына, материалына, шамасына және электродтардың кеңістіктегі орналасуына тәуелді

КОНДУКТОМЕТРЛІК ӘДІСТЕРДІН ЖІКТЕЛУІ.ТУРА ЖӘНЕ ЖАНАМА КОНДУКТОМЕТРИЯ. Талдаудың кондукто метрлік әдістерін қолдану ауқымына қарай үш топқа бөлуге болады: таза заттын, ерігіндінін құрамын және физикалық- химиялық өзгерістердің кинетикасын зерттеу; ғылымдық, технологиялық және өндірістік процестерде бақылау үшін қолданылатын талдау кондуктометриясы; эквиваленттік нүктені (э.н.) анықтау үшін пайдаланылатын кондуктометрлік (автоматтық) титрлеу. Аналитикалык кондуктометрияны тура және жанама деп жіктейді. Тікелей кондуктометрия әдісінде зат концентрациясын ерітіндінің электр өткізгіштігі бойынша анықтайды, онда да бұл екеуінің арасындағы тура пропорционалдық тэуелділіктін болуына байланысгы. Тура кондуктометрлік талдау әдісі өте карапайым болғанымен, ол өте шектеулі қолданылады, өйткені болмашы ғана кездейсок электролит қоспасы ерітіндінің электр өткізгіштігін едәуір езгертуге бейім тұрады. Жанама кондуктометрия әдісі. Бұл әдіс көп кұрамды ерітіндідегі тек бір ғана құрамдас бөлікті талдаған кезде, кондуктометриямен қатар талдаудың басқа да физикалық-химиялық әдістерін қолдануга негізделген. Сол сияқты жанама кондуктометрия әдісіне ерітіндідегі ойтеуір бір қосылыс немесе сумен әрекеттесіп, электр өткізгішті өзгертуге себепші болатын газдың концентрациясын анықтау да енеді, мысалы, С0 2, NH 3, S0 2, S0 3, N0 2 және т.б.



КОНДУКТОМЕТРЛІК ТИТРЛЕУ Титрлеу процесін бақылау үшін электр өткізгіштікті өлшеу әдісін колдануды берілген ерітіндінің электр өткізгіштігі реагент не реакция өнімінікінен айтарлықтай өзгеше болған жағдайда қолдануға болады. Титрлеу кезінде ұяшык тұрактысын білу шарт емес, өйткені ә.н.-ді табу үшін салыстырмалы шамалар да жеткілікті. Алайда электродтар арасы өзгеріссіз қалғаны абзал, яғни олар кеңістікте мықты орналасуы керек. Кез келген ион ерігіндісінің электр өткізгіштігіне қосар үлесі, оның концентрациясы мен эквиваленттік электр өткізгіштігіне тура пропорционал, бірақ титрлеу барысында реагенттің қосылуына қарай ерітіндінің көлемі артып отырады. Бұған электр өткізгіштікті есептеу кезінде ерітіндіні сұйылтқанда өзгеріс енгізу керек. Сызықты тәуелділіктен ауытқу іс жүзінде реакцияға түсуші зат не өнімнің гидролизденуі немесе тұнбанын ішінара еруі не тұрақтануы салдарынан байкалады

Достарыңызбен бөлісу:




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет