1 — пробка из гранул огнеупорного материала;
2— огнеупорный корпус; 3— пустотелый кирпич;
4 — огнеупорная фурма; 5— стальная трубка
Рис. 3. Схема движения газометаллических потоков в ковше при продувке металла через пористые швы днища
достаточной для надежной работы при 1550—1650 °С, а также термической и химической стойкостью к металлу и шлаку. Один из вариантов конструкции пробки показан на рис. 2. Использование пробок данной конструкции обеспечивает интенсивное перемешивание металла.
Распространение получил также метод продувки металла через пористое днище ковша1. Лучшим в эксплуатации оказалось днище из обычных огнеупоров с пористыми швами (рис. 3). Стойкость подобного днища такова, что оно служит всю кампанию ковша и заменяется только при ремонте футеровки.
1В зарубежной литературе такая технология обозначается SS (от англ, strong stirring— сильное перемешивание).
На рис. 4 приведена схема продувочной фурмы с газовой защитой. Через такую фурму можно вдувать также и порошки. Получают распространение и другие способы. Степень протекания всех перечисленных выше процессов зависит от продолжительности продувки и от ее интенсивности (т. е. в конечном счете от расхода инертного газа):
1) продувка c расходом газа до 0,5 м3/т стали достаточна для усреднения химического состава и температуры металла;
2) продувка с интенсивностью до 1,0м3/т влияет на удаление из металла неметаллических включений;
3)для эффективной дегазации необходим расход инертного газа 2—3 м3/т металла.
Во многих случаях продувку инертным газом проводят одновременно с обработкой металла вакуумом. В этом случае расход инертного газа может быть существенно уменьшен. Совмещение продувки инертным газом с об-
Рис. 4. Схема продувочной фурмы с газовой защитой:
1 — фурма; 2 — подвод газа на продувку; 3 — конус; 4 — подвод газа на струйную защиту; 5— футеровка;
6— крепление конуса; 7— продувочное сопло
Рис. 5. Схема САВ-процесса:
1— ковш с металлом; 2— крышка ковша; 3— устройство для загрузки ферросплавов; 4— отверстие для отбора проб;
5— синтетический шлак; 6— шиберный затвор; 7— пористая пробка для введения аргона
работкой шлаком способствует повышению эффективности использования шлаковых смесей, так как при интенсивном перемешивании при продувке увеличиваются продолжительность контакта и сама поверхность контакта металла со шлаком.
Рис. 6. Схема SAB-процесса:
1 — ковш с металлом; 2— погружной огнеупорный колпак; 3 — отверстие для подачи материалов; 4 — синтетический шлак; 5 — окислительный шлак; 6— шиберный затвор; 7—пористая пробка для введения аргона
Если при этом ковш, в котором осуществляется такая обработка, накрыт крышкой, то при условии создания атмосферы инертного газа в пространстве между крышкой и поверхностью шлака металл будет защищен от окисления, а снижение потерь тепла позволит увеличить время контакта металла с жидким шлаком. На этом принципе основана разработанная на одном из заводов Японии технология так называемого CAB '-процесса. Как видно из рис. 5, в данной технологии предусмотрено наличие на поверхности металла в ковше синтетического шлака заданного состава. В тех случаях, когда из плавильного агрегата в ковш попадает окисленный конечный шлак, применим метод, названный в Японии SAB 2-процессом (рис. 6). Введение в металл добавок в нейтральной атмосфере и хорошее их усвоение при перемешивании металла инертным газом обеспечивается при несколько усложненном способе защиты зоны продувки — это так называемый САS3-процесс. По этому способу в ковш сверху вводят огнеупорный колпак, закрытый снизу расплавляющимся металлическим конусом таким образом, чтобы внутрь этого колпака не попал шлак. Через колпак вводят ферросплавы, снизу в ковш подают аргон для продувки. Этот метод позволяет достичь высокой степени усвоения элементов, вводимых с добавками в металл (рис. 7).
Рис. 7. Схема CAS-процесса:
1— ковш с металлом; 2 — погружной колпак из высокоглиноземистых огнеупоров; 3— отверстие для отбора проб;
4 — люк для введения ферросплавов; 5—расплавляющийся конус из листовой стали, препятствующий попаданию шлака при опускании колпака в металл; 6— пористая пробка для введения аргона
На рис.8 представлена схема CAS-установки усложненной конструкции, смонтированной в конвертерном цехе завода фирмы Wheeling Pittsburgh Steel (США). На этой установке предусмотрена возможность подогрева стали за счет теплоты реакции окисления кислородом вводимого в металл алюминия. Установка названа CAS-OB1.
В тех случаях, когда необходимо перемешивать металл в ковше под шлаком длительное время, в крышку ковша опускают электроды и подогревают ванну. При этом исключается использование обычного шамота в качестве огнеупорного материала ковша, так как продолжительный контакт жидкоподвижного высокоосновного шлака с шамотной футеровкой, состоящей из кремнезема и глинозема, приведет к быстрому выходу футеровки из строя. Ковш футеруют основными высокоогнеупорными материалами.
Рис. 8. Схема установки CAS-OB:
1 — Фурма для продувки кислородом с нагревом стали; 2 — желоб для подачи легирующих; 3 — дымоход; 4 — фурма для вдувания порошков; 5 — устройство для подъема колпака; 6— струя кислорода; 7— колпак; 8 — перемешивающий газ; 9—пористая пробка
Рис. 9. Совершенствование конструкции сталеразливочных ковшей и методов продувки металла инертным газом:
а — ковш, снабженный затвором шиберного типа; б— продувка газа через днище; в — подача газа снизу через стенку ковша; г — продувка через ложный стопор; д — продувка металла в ковше, накрытом крышкой; г — интенсивная продувка через ряд фурм или пористое днище; ж — продувка снизу в ковше с крышкой, через которую вводят добавки; з — продувка в ковше под вакуумом
ящей из кремнезема и глинозема, приведет к быстрому выходу футеровки из строя. Ковш футеруют основными высокоогнеупорными материалами.
Сочетание продувки инертным газом с заменой футеровки ковша позволяет добиться заметного снижения загрязнения металла кислородом. Если при обычной технологии для раскисленной алюминием стали произведение [А1]2·[О]3 достигает значения 10-8 – 10-9, то при использовании ковшей с основной футеровкой при продувке аргоном оно составляет ~ 10 -11.
На рис. 9 отражена эволюция методов продувки металла инертным газом.
1 От англ, capped argon bubbling.
2 От англ, sealed argon bubbling.
3 Composition adjustment by sealed — регулирование состава при «закрытой» продувке аргоном.
Достарыңызбен бөлісу: |