До 1986 г. были известны сверхпроводники, обладающие этим свойством при очень низких температурах — ниже –259 °С. В 1986-1987 годах были обнаружены материалы с температурой перехода в сверхпроводящее состояние около –173 °С. Это явление получило название высокотемпературной сверхпроводимости, и для его наблюдения можно использовать вместо жидкого гелия жидкий азот.
До 1986 г. были известны сверхпроводники, обладающие этим свойством при очень низких температурах — ниже –259 °С. В 1986-1987 годах были обнаружены материалы с температурой перехода в сверхпроводящее состояние около –173 °С. Это явление получило название высокотемпературной сверхпроводимости, и для его наблюдения можно использовать вместо жидкого гелия жидкий азот.
Свойством сверхпроводимости обладают около половины металлов и несколько сотен сплавов.
Свойством сверхпроводимости обладают около половины металлов и несколько сотен сплавов.
Сверхпроводящие свойства зависят от типа кристаллической структуры. Изменение её может перевести вещество из обычного в сверхпроводящее состояние.
Сильное магнитное поле разрушает эффект сверхпроводимости. Следовательно, при помещении в магнитное поле свойство сверхпроводимости может исчезнуть.
Физическая природа сверхпроводимости
Явление сверхпроводимости можно понять и обосновать только с помощью квантовых представлений . Они были представлены в 1957 году американскими учеными Дж.Бардиным, Л.Купером, Дж.Шриффером и советским академиком Н.Н. Боголюбовым.
В 1986 году была открыта высокотемпературная сверхпроводимость соединений лантана, бария и других элементов (Т= 1000К - это температура кипения жидкого азота).
Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году, т.е. полное вытеснение магнитного поля из материала при переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками Мейснером и Оксенфельдом