Жұмыс бағдарламасы (силлабус) осы мамандықттардың Қр мжмбс 08. 329-2006, Қр мжмбс 08. 33-2006 Мемлекеттік стандартына сәйкес құрылған



бет5/214
Дата13.02.2017
өлшемі21,8 Mb.
#9109
түріМазмұндама
1   2   3   4   5   6   7   8   9   ...   214

Анықтама. Егер АВ және АВ болса, онда А жиыны В-ға қатаң кіреді дейміз және А жиыны В-ның меншікті ішкі жиыны деп аталады. Анықтамаларға байланысты төмендегідей тұжырымдарды жазуға болады:

1.  X: ХХ; 2.  М:   М; 3. Егер ХУ, ал У Z, онда ХZ; 4. ХУ, ал У Х, болса, онда Х = Ү;

Жиындардың теңдігін дәлелдеу үшін олардың бір-біріне ішкі жиын болатындығын көрсету керек.

Элементтің жиынға жатуы () мен жиынның басқа жиынның ішкі жиын болуын (), яғни жиынның басқа жиынға кіруі ұғымдарын шатастырмау керек (, ). О  {о} және {o} = {{o}} болғанымен O  {{o}} деу дұрыс емес, себебі {{o}} жиынының жалғыз ғана элементі {o} бар. (о – элементі бола алмайды).



Анықтама. Элементтердің ақырлы санынан тұратын жиын, ақырлы жиын деп аталады, керісінше болса ақырсыз жиын деп аталады. Мысалы N, R жиындары ақырсыз.

Анықтама. Ақырлы жиындардағы элементтердің саны жиынның қуаты деп аталады және | | белгілерімен қоршалып жазылады. Мысалы, М – ақырлы жиын болса, оның қуаты | M |. Қуаты 0-ге тең жиын, яғни элементтері жоқ жиын бос жиын деп аталады және  белгіленеді |  | = 0. (|{}| = 1емес) Бос жиын кез-келген жиынның ішкі жиыны болады деп есептеледі.Егер А және В жиындары тең болса, олар тең қуатты жиындар деп аталады. Мысалдар:

1. А = {1, 2, 3}, B = {3, 4, 5}, A  B.

2. A = {1 ,2 ,3, 4}; B = {4, 3, 1, 2}; A = B, себебі AB, BA;

3. A = {1, 2, 3}; B = {2, 4, 6}; C = {1, 2, 3, 4, 5}, AC; BA.



Анықтама. А жиынының барлық ішкі жиындарының жиынтығы булеан немесе дәрежелі жиын деп аталады және Р(А) деп белгілінеді (2А деп те белгіленеді). Сонымен, 2А = P(A) ⇆ {B | BA} немесе 2А. Мысалдар: Егер А = {1, 2 ,3} болса, P(A) = {, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}.

Анықтама. Қарастыруға болатын барлық мүмкін элементтерден тұратын жиын универсал немесе универсум деп аталады және U деп белгіленеді.

1.3. Жиындармен операциялар (амалдар).

P(U) булеанындағы операцияларды және олардың геометриялық кескінделулерін қарастырамыз.

1. Қиылысу операциясы. Егер A,B  P(U) онда, осы А, В жиындарының екеуіне де тиісті элементтерден тұратын жиынды А, В жиындарының қиылысуы деп атайды және ол төмендегідей өрнектеледі:

AB⇆{x | xA & xB}; Мысалы, A{1,2,3}, B{3,4,5} болса AB={3};



2. Бірігу операциясы. А,В жиындарының ең болмаса біреуіне тиісті элемент терден тұратын жиынды А,В жиындарының бірігуі деп атайды және ол төмендегідей өрнектеледі:

A  B ⇆ {x | x  A ∨ xB} Мысалы, A={1, 2, 3, 4};



B={4, 3, 6, 7} болса, AB = {1, 2, 3, 4, 6, 7}

А,В жиындарының қиылысуын олардың көбейтіндісі (А*В), ал бірігуін олардың қосындсы (А + В) деп те атайды

Жиындардың айырымы. А жиынының В-ға кірмейтін элементтерінен тұратын жиынды А,В жиындарының айырымы деп атаймыз және ол төмендегідей өрнектеледі:

А\В⇆A-B⇆{x|xA және хВ}.



A{1,2,3}, B{3,4,5} болса, A\B={1,2}; B\A ={4,5};

3. Сақиналы қосынды. А,В жиындарының өзара айырымдарының бірігуін сақиналы қосынды немесе симметриялық айырым деп атайды AB⇆(A\B)(B\A) болып белгіленеді. (А\В)(В\А).Жоғарыда қарастырылған А,В үшін: A={1,2,3,4}; B={4,3,6,7} ; А \ B ={1,2,3,4} \ {3,4,6,7}={1,2}B\А=

{3, 4, 6, 7}\{1, 2, 3, 4} = {6, 7}; А  В = {1, 2, 6, 7};



Симметриялық айырымның тағы бір формуласы:

AB=AB=AB ⇌(AB)\(AB);



AB={1, 2, 3, 4, 6, 7} \ {3, 4}={1, 2, 6, 7}.

  1. Жиынының толықтауышы. U универсумындағы А-ға тиісті емес элементтер U универсумындағы А жиынының толықтауышы деп аталады (А-ны U-ға дейін толықтыратын) Ā⇆U\A болып белгіленеді.



Мысалы, A = {1,2,3,4} жиынының толықтауышы. Ā ={6,7}; B={4,3,6,7} жиынының толықтауышы ={1,2} ; {,,} операциялары буль операциялары деп аталады .

  1. Анықтама. Жиындардың геометриялық кескіндері Эйлер-Венн диаграммалары деп аталады. Біріктіру, қиылысу операцияларын кез-келген жиындар дың жиыны болатын Аi (мұндағы іІ жиынының элементтерін қабылдайды) жиынына да анықтауға болады:

Айталық І – элементтері индекс ретінде қолданылатын қандай да бір жиын болсын және  іІ үшін Аі белгілі болсын. Олай болса, қиылысу |

Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   214




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет