Изотермы адсорбции на поверхности ж/г.
Уравнение адсорбции Гиббса
Вернемся к рассмотрению процессов, идущих на поверхности ж/г, поскольку эта поверхность, безусловно, энергетически однородна.
При растворении в воде ПАВ накапливаются в поверхностном слое, ПИВ — в растворе. Распределение вещества между поверхностным слоем и объемом среды подчиняется принципу минимальной энергии: на поверхности осаждается то вещество, которое обеспечивает наименьшее поверхностное натяжение: в первом случае ПАВ, во втором вода.
Рассмотрим процессы адсорбции этих веществ на границе раздела фаз. Вспомним влияние концентрации растворенных веществ на границе раздела фаз на поверхностное натяжение.
Когда концентрация адсорбата (СПАВ) на поверхности больше, чем в объеме среды, то наблюдается уменьшение поверхностного натяжения вследствие образования на границе раздела фаз ориентированного слоя, т.е. адсорбированного слоя. В этом случае Г > 0, при этом величина поверхностной активности > 0. Это отражено на рис.2.18 кривой 1. Г∞ — величина предельной адсорбции при образовании монослоя.
При недостатке вещества в поверхностном слое Г < 0. Это можно наблюдать при изучении адсорбции ПИВ.
Кривая 2, описывающая адсорбцию ПИВ в поверхностном слое, (отрицательная адсорбция ПИВ) говорит о вытеснении молекул растворенного вещества с поверхности в глубь фазы.
Г
1
С
2
Рис 2.18. Изотермы адсорбции ПАВ (1) и ПИВ (2)
Процесс насыщения монослоя тормозится тепловым движением, которое увлекает часть молекул внутрь фазы. С уменьшением Т тепловое движение ослабевает, и избыточная адсорбция Г при той ж концентрации увеличивается (рис.2.19).
Г Т3> Т2 >Т1
1 2 3
С
Рис. 2.19. Изотермы адсорбции ПАВ при разных температурах
Простых и доступных методов определения избыточной адсорбции Г не существует. Однако на поверхности ж/г легко измерить поверхностное натяжение, а затем использовать очевидную связь между поверхностным натяжением и адсорбцией для расчета избыточной адсорбции ГПАВ.
(Вывод уравнения Гиббса. Обычно не даю)
Запишем для единицы площади при постоянной температуре:
, (2.51)
где μ — химический потенциал, равный . (2.52)
μо — абсолютный химический потенциал данного компонента, R — универсальная газовая постоянная, Т — температура, a — активность компонента в растворе.
Произведем дифференцирование этого уравнения:
(2.53)
Отсюда: (2.54)
При малых концентрациях а можно заменить на с и записать
. (2.55)
Уравнение (2.55) Гиббса позволяет рассчитать избыточную адсорбцию Г — разность между концентрацией адсорбтива в поверхностном слое и объемом раствора для концентрации С раствора ПАВ.
Уравнение Гиббса с точки зрения термодинамики универсально и применимо к границам раздела любых фаз.
Достарыңызбен бөлісу: |