Маннапова Нодира



бет4/5
Дата03.01.2022
өлшемі236,45 Kb.
#108217
1   2   3   4   5
Байланысты:
1-задание физ.твердого тела.МАННАПОВА НОДИРА

Рис. 1.3а.
Решетки Браве.






Рис. 1.3б.
Решетки Браве.


     1. В триклинной системе как все углы не равны друг другу так и все длины сторон не равны друг другу. Данная решетка имеет центр симметрии в центре элементарной ячейки.

     2. В моноклинной системе ячейка имеет форму прямой призмы с ребрами разной длины. Ячейка может быть с центрированными основаниями прямой призмы   и примитивной  . У такой решетки добавляются элементы симметрии: плоскость симметрии, параллельная основанию прямой призмы, и ось вращения 2-го порядка, проходящая через середины оснований.

     3. В ромбической системе ячейка имеет форму прямоугольного параллелепипеда с ребрами разной длины. Ячейка имеет все 4 разновидности:  . У такой решетки еще больше элементов симметрии: три плоскости симметрии, параллельные граням, и три оси вращения 2-го порядка, проходящие через середины противоположных одинаковых граней.

     4. В тетрагональной системе ячейка имеет форму прямоугольного параллелепипеда с квадратным основанием. Ячейка может быть примитивной   и ОЦ  . По сравнению с предыдущей решеткой у нее появляется ось вращения 4-го порядка и несколько плоскостей симметрии.

     5. В кубической системе ячейка имеет форму куба. Ячейка может быть с центрированными гранями куба (ГЦК - гранецентрированный куб) или центром (ОЦК - объемноцентрированный куб). Это самая симметричная решетка, элементы симметрии которой мы рассматривали выше (см. рис. 1.2).

     6. В гексагональной системе ячейка имеет форму прямой призмы с ромбом в основании, причем угол в ромбе равен 60 градусам. Часто рассматривают утроенную ячейку (см. рис. 1.4), имеющую вид правильной шестигранной призмы с осью симметрии шестого порядка (отсюда и ее название).

     7. В тригональной системе ячейку принято выбирать в виде ромбоэдра, все грани которого - одинаковые ромбы с углом при вершине  . Заметим, что в случае ОЦК и ГЦК решеток можно выбрать элементарную тригональную ячейку с объемом в 2 и 4 раза меньшим, чем выбранная кубическая (см. задачу. 1.1).




Рис. 1.4а.
Элементарные ячейки гексагональной решетки.






Рис. 1.4б.
Варианты расположения атомов в плотноупакованных структурах (б).


     Все другие "типы" решеток которые, казалось бы должны существовать, например изображенная на рис. 1.1 решетка "б" с квадратом в основании, могут быть сведены выбором других векторов   к одному из указанных выше типов.

     Симметрия решетки определяет анизотропию (различные значения по различным направлениям) физических свойств. Анизотропия некоторых физических свойств может быть предсказана по виду элементарной ячейки. Например для ромбической, моноклинной и триклинной решеток, обладающих сравнительно малым числом элементов симметрии, наблюдается анизотропия многих характеристик, рассмотренных в главах 3-5, например относительной электрической проницаемости, коэффициента теплопроводности. Эти характеристики веществ обычно описывают матрицами второго порядка [4-6]. В случае симметричной кубической решетки эти величины могут превратиться в скалярные; в случае тетрагональной или гексагональной решетки свойства кристалла могут оказаться одинаковыми в плоскости перпендикулярной ребру с. Достаточно подробно связь симметрии кристаллической решетки с симметричностью тензоров, описывающих различные физические свойства, рассматривается в литературе по кристаллографии, например [4-6].

     Ячейка Вигнера-Зейца. Существует способ выбора элементарной ячейки, называемой ячейкой Вигнера-Зейца, используемой в последующих главах для анализа движения частиц в кристалле. Для выбора ячейки выделяют область пространства "более приближенную" к данному узлу кристаллической решетки, чем к другим. Для этого соединяют выбранный узел с одним из ближайших (или иногда также и следующими за ближайшими) его соседей отрезком, находят его середину и через нее проводят перпендикулярную данному отрезку плоскость, делящую пространство на два полупространства. Выделяют полупространство, содержащее выбранный узел. Такую операцию повторяют со всеми соседями выбранного узла. Пересечение всех выделенных полупространств и даст ячейку Вигнера-Зейца. Можно легко показать, например, что в случае примитивных кубической, тетрагональной и ромбической решеток ячейка Вигнера-Зейца по форме и размерам совпадает с элементарной ячейкой, а ее центр совпадает с узлом решетки. В случае ОЦК и ГЦК решеток ячейка Вигнера-Зейца имеет более сложную форму [1].

     Направление в кристаллической решетке. Направление в кристаллической решетке задают координатами их направляющего вектора в базисных векторах  , обычно их заключают в квадратные скобки. При этом знак минуса в случае отрицательности координаты изображают над числом. Наиболее важные направления задаются как правило целыми числами. На рис. 1.2 направление   параллельно ребру куба, направление   параллельно пространственной диагонали куба, а направления   и   - диагоналям его нижнего основания. Некоторые направления в силу симметричности решетки, например кубической, физически равноценны, например  ,  ,   и  . Для описания такого семейства направлений используют треугольные скобки  .

     Кристаллографические плоскости. В кристалле большое значение имеют особые кристаллографические плоскости, проходящие через узлы кристаллической решетки. Именно кристаллографические плоскости, на которых расположено большое количество узлов кристаллической решетки, важны как для предсказания огранки кристалла, так и при рассмотрении движения частиц в нем (см. разд. 1.3 и главы 3 и 4).

     Кристаллографические плоскости принято описывать индексами Миллера - набором трех целых чисел, заключенных в круглые скобки  . Знак минус отрицательного индекса принято ставить над ним. Эти индексы имеют простой геометрический смысл. Если вдоль трех координатных осей, заданных векторами  , отложить соответственно отрезки с длинами   (см. рис. 1.5), то получившиеся три точки однозначно зададут проходящую через них плоскость  . На рис. 1.6 показаны плоскости  . Заметим, что параллельно изображенной на рис. 1.5 плоскости можно провести много параллельных плоскостей проходящих через узлы кристаллической решетки, откладывая по осям отрезки с длинами   ( - целое число) расстояние между такими ближайшими плоскостями называется межплоскостным расстоянием   системы плоскостей  . Величину   удобно вычислять как расстояние от точки (000) до ближайшей к ней плоскости   (см. рис. 1.5). В кристаллах с кубической ячейкой индексы Миллера плоскости совпадают с координатами направления вектора нормали к ней, в случае других ячеек это как правило не так.







Достарыңызбен бөлісу:
1   2   3   4   5




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет