Метрология введение



бет9/18
Дата14.12.2021
өлшемі0,8 Mb.
#126651
түріРуководство
1   ...   5   6   7   8   9   10   11   12   ...   18
Байланысты:
Метрология лабы

В) Нормирование пределов допускаемой основной погрешности для

средств измерений с соизмеримой аддитивной и мультипликативной

погрешностью.
Если аддитивная и мультипликативная составляющая погрешности средства измерений соизмеримы (3-й график на рис.2), то задание предельно-допустимой погрешности одним числом не представляется возможным. В этом случае либо нормируется предел допускаемой абсолютной основной погрешности (указываются предельно-допустимые значения a и b), либо (чаще всего) нормируется предел допускаемой относительной основной погрешности. В последнем случае численные значения предельно-допустимых относительных погрешностей в различных точках шкалы оцениваются по формуле:

,

где Xmax – предел измерений;

X - измеренное значение;

d = - значение приведенной к пределу измерений

аддитивной составляющей основной погрешности;

с = - значение результирующей относительной

основной погрешности в точке, соответствующей пределу

измерений.


Рассмотренным выше способом (указанием численных значений c и d) нормируются , в частности, предельно-допустимые значения относительной основной погрешности цифровых измерительных приборов. В этом случае относительные погрешности каждого экземпляра средств измерений определенного типа не должны превышать установленных для этого типа средств измерений значений предельно-допустимой погрешности:

.

При этом абсолютная основная погрешность определяется по формуле



.
Г) Нормирование дополнительных погрешностей.
Наиболее часто пределы допускаемых дополнительных погрешностей указывают в технической документации либо одним значением для всей рабочей области величины, влияющей на точность средства измерений (иногда несколькими значениями для поддиапазонов рабочей области влияющей величины), либо отношением предела допускаемой дополнительной погрешности к интервалу значений влияющей величины. Пределы допускаемых дополнительных погрешностей указываются на каждой , влияющей на точность средства измерений величине. При этом, как правило, значения дополнительных погрешностей устанавливают в виде дольного или кратного значения предела допускаемой основной погрешности. Например, в документации может быть указано, что при температуре окружающей среды за пределами нормальной области температур, предел допускаемой дополнительной погрешности, возникающей по этой причине, не должен превышать 0,2% на 10о С.
Классы точности средств измерений.

Исторически по точности средства измерений подразделяют на классы. Иногда их называют классами точности, иногда классами допуска, иногда просто классами.


Класс точности средства измерений – это его характеристика, отражающая точностные возможности средств измерений данного типа.
Допускается буквенное или числовое обозначение классов точности. Средствам измерений, предназначенным для измерения двух и более физических величин, допускается присваивать различные классы точности для каждой измеряемой величины. Средствам измерений с двумя или более переключаемыми диапазонами измерений также допускается присваивать два или более класса точности.

Если нормируется предел допускаемой абсолютной основной погрешности, или в различных поддиапазонах измерений установлены разные значения пределов допускаемой относительной основной погрешности, то , как правило, применяется буквенное обозначение классов. Так, например платиновые термометры сопротивления изготовляют с классом допуска А или классом допуска В. При этом для класса А установлен предел допускаемой абсолютной основной погрешности , а для класса В - , где – температура измеряемой среды.

Если для средств измерений того или иного типа нормируется одно значение предельно-допустимой приведенной основной погрешности, или одно значение предельно-допустимой относительной основной погрешности, или указываются значения c и d, то для обозначения классов точности используются десятичные числа. В соответствии с ГОСТом 8.401-80 для обозначения классов точности допускается применение следующих чисел:

1∙10n; 1,5∙10n; 2∙10n; 2,5∙10n; 4∙10n; 5∙10n; 6∙10n, где n = 0, -1, -2, и т.д.

Для средств измерений с преобладающей аддитивной погрешностью численное значение класса точности выбирается из указанного ряда равным предельно-допустимому значению приведенной основной погрешности, выраженной в процентах. Для средств измерений с преобладающей мультипликативной погрешностью численное значение класса точности соответствует пределу допускаемой относительной основной погрешности также выраженной в процентах. Для средств измерений с соизмеримыми аддитивными и мультипликативными погрешностями числа с и d также выбираются из указанного выше ряда. При этом класс точности средства измерений обозначается двумя числами, разделенными косой чертой, например, 0,05/0,02. В этом случае с = 0,05% ; d = 0,02%. Примеры обозначений классов точности в документации и на средствах измерений, а также расчетные формулы для оценки пределов допускаемой основной погрешности приведены в таблице 1.
Таблица 1

Примеры обозначения классов точности средств измерений и расчетные формулы для оценки пределов допускаемой основной погрешности.



Форма

представления

нормируемой

основной


погрешности

Примеры обозначения

класса точности



Расчетные формулы для

оценки пределов

допускаемой основной

погрешности


Примечания



В

документации



На

средствах

измерений


Нормируется

предел допускаемой

абсолютной

основной погрешности



Варианты:

- класс B;

- класс допуска В;



Достарыңызбен бөлісу:
1   ...   5   6   7   8   9   10   11   12   ...   18




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет