1.1.5. ФЕРМЕНТТЕР Тірі клеткаларда зат алмасу процесі үздіксіз жүріп жатады. Зат алмасу процесі дегеніміз белгілі бір тәртіппен кезектесіп келіп отыратын әр түрлі химиялық реакциялардың жиынтығы. Дәл осы реакциялар клеткадан тыс жерде (іп vіtrо) өте қиындықпен және өте баяу жүреді. Тірі клеткада бұл реакциялардың жүрісін ферменттер тездетеді.
Ферменттер дегеніміз жануарлардың, өсімдіктер мен микроор-ғанизмдердің клеткалары жасап шығаратын биологиялық катали-
заторлар.
1.1.5.1. Ферменттік әсер ету механизмі.Химиялық реакциялар-дың жылдамдығы реакцияға түсетін молекулалардың соқтығысу жиілігіне байланысты. Ал соқтығысу жиілігі молекулалардың
концентрациясы мен ортаның температурасына байланысты.
Температураның артуына қарай молекулалар қозғалысының кинетикалық энергиясы да артады, бұл молекулалар соқтығысуы-ның жиілігіне әсер етеді. Сонымен қатар реакдияның өтуі үшін молекулалардың соқтығысуы жеткіліксіз. Бұл кезде олар активті күйде болуы қажет, басқаша айтқанда, оларда реакция үшін қажетті энергияның біршама артық қоры болуы тиіс. Мұндай энергияны активация энергиясы деп атайды. Фермент осы реакцияға қажет активация энергиясын кемітеді. Ол үшін фермент реакцияға ұшырайтын заттың молекуласымен (оны субстрат деп атайды)
31 бірігіп комплекс түзеді. Комплексті қысқаша Ф + С (фермент+ + субстрат) деп белгілейді. Бұл комплекстің түзілуіне әлдеқайда аз мөлшердегі энергия қажет.
Фермент + субстрат аралық комплексін түзу кезінде субстрат молекулалары біраз деформацияға ұшырайды, сондықтан реакция-ның активация энергиясы кемиді. Бұл деформация субстраттың молекула ішілік байланыстарын әлсіретеді және молекуланы белгі-лі бір реакцияға неғұрлым қабілетті етіп шығарады. Комплекстің түзілуі спектрлік методтардың жәрдемімен дәлелденген.
Ф + С аралық комплексін түзуде субстрат ферменттің бүкіл мо-лекуласымен емес, оныд активтік орталықтар деп аталатын жеке-легең учаскелерімен қосылады. Ферменттің әрбір молекуласында 1—2 активтік орталық бар екендігі анықталып отыр.
Активтік орталықтық кеңістіктік құрылысы мен химиялық та-биғаты белгілі бір субстратқа ғана сай келетіндей болып қалып-тасқан. Бұл фермент басқа субстратқа катализатор бола алмайды. Осы ерекшелік ферменттердің талдаушылық қасиетін белгілейді.
Органикалық заттар мен ферменттердің структурасын зерттей келе, Э.. Фишер фермент пен субстраттың кедістіктік сәйкестігінің жақындығы женінде қорытынды шығарып, фермент субстратқа құлпының кілтіндей сәйкес келеді деп сипаттады.
1.1.5.2. Ферменттердің химиялық табиғаты. Алғаш рет ферменгті 1814 жылы орыс академигі К. С. Кирхгофф ашқан. Ол бидай тұқымынан крахмалды ыдырататын амилаза ферментін тапты. Қазіргі кезде 1 000-нан астам ферменттердің әсері зерттелген. Оның ішінде 100-ге жуығы кристалл түрінде алынған. Олардың бәрі де белоктар болып табылады.
Ферменттер молекулаларының құрылысына қарай
2 топқа бөлінеді: 1) тек қана белоктардан тұратын бір компонентті ферменттер;
2) молекулаларының құрамына белоктан басқа активтік немесе простетикалық топ деп аталатын белоксыз текті заттар кіретін екі компонентті ферменттер.
Бір компонентті ферменттерде активтік орталықтың ролің амин қышқылдарының бүйірлік радикалдары атқарады. Белок — фер-мент молекуласының II және III деңгейлік структурасы жасалған кезде, бүйірлік радикалдар өзара жақындасады да, активтік орта-лығын қүрады. Мысалы, панкреатикалық рибонуклеазаның актив-тік орталығына гистидин-16-ның, лизин- 41-дің және гистидин-119-дық қалдықтары кіреді. Активтік орталықтың осы компоненттері-нін. кеңістіктік жақындасуын күрделендіре түсетін амин қышқылдары да ферменттер үшін маңызды роль атқарады. Белок — фермент молекуласының құрамынан басқа амин қышқылдарын ферменттің активтік қасиетіне нұқсан келтірмей де ажыратып алуға болады.
Екі компонентті ферменттердегі активті топ металл немесе кіші молекулалы органикалық зат болып табылады. Органикалық таби-ғатты активті топтар екі типке белінеді:
1) коферменттер: олар ферменттің белокты бөлігімен берік
32 байланысады. Оксидоредуктазаның құрамындағы флавинаденин динуклеотид (ҒАБ) осындай коферментке мысал бола алады;
2) косубстраттар; олар ферменттің белокты бөлігімен нашар байланысқан, сондықтан олар ферменттің бір молекуласынан екін-ші молекуласына өте алады. Косубстратқа анаэробты оксидоредук-тазанын, құрамындағы никотинамидадениндинуклеотид (NАD+) мысал бола алады.
Ғе, Со, Си, Мп металдары ферменттердін, активті топтарында белокпен берік байланысқан, ал К, Са, Мg, Zп, С1 сияқты басқа элементтер — әлсіз байланысқан, олар өздерінің қатысуы арқылы көбінесе ферментті активтендіре түседі.
Ферменттер субстратқа да, сондай-ақ химиялық байланыстың типіне де талғаушылық қасиет көрсетеді.