: М(а,А) және N(b,B) нүктелерінен өтетін g=g(х) жатық қисықтары арасынан доғасының ұзындығы ең кіші түзуді табу керек болсын.
Есеп С(1)[a,b] класына жататын g=g(х) қисықтары үшін және g(а)=А, g(b)=B болатын келесі функционалдың минимумын табуға келеді:
Геометриялық мағынасына көңіл аударсақ: ізделінді түзу
болады.
Негізгі теоремалар.
Г шекаралы G облысында үзіліссіз коэффициентті (қарапайым немесе дербес туындылы) сызықты дифференциалдық теңдеу берілсін және осы теңдеудің Г шекарасында берілген шекаралық біртекті шарттарды қанағаттандыратын g шешімін табу керек болсын. Бұл теңдеудің сол жағын G+Г облысында жеткілікті үзіліссіз туындылары бар және Г шекарасында шекаралық шарттарды қанағаттандыратын К функциялар жиынында анықталған L сызықты оператор ретінде қарастыруға болады. Сонда есеп келесі операторлық теңдеуді шешуге келеді:
Lg=f(P), (7.40)
R[g]=0, (7.41)
Мұндағы Р тәуелсіз айнымалылар тобы, f(P) функциясы - gK болатын үзіліссіз берілген функция, сонымен қатар g функциясы Г шекарасында шекаралық шартты қанағаттандырсын. R – белгісіз сызықты, төмен ретті оператор.
Lg=f(P) (7.42)
R[g]=(P) , РГ, (7.43)
Достарыңызбен бөлісу: |