import numpy as np
Функция array() — один из самых простых способов, позволяющих динамически задать одно- и двумерный массив в Python. Она создаёт объект типа ndarray:
array = np.array(/* множество элементов */)
Для проверки используется функция array.type() — принимает в качестве аргумента имя массива, который был создан.
Если хотите сделать переопределение типа массива, используйте на стадии создания dtype=np.complex:
array2 = np.array([ /*элементы*/, dtype=np.complex)
Когда стоит задача задать одномерный или двумерный массив определённой длины в Python, и его значения на данном этапе неизвестны, происходит его заполнение нулями функцией zeros(). Кроме того, можно получить матрицу из единиц через функцию ones(). При этом в качестве аргументов принимают число элементов и число вложенных массивов внутри:
np.zeros(2, 2, 2)
К примеру, так в Python происходит задание двух массивов внутри, которые по длине имеют два элемента:
array([
[[0, 0]]
[[0, 0]]]
)
Если хотите вывести одно- либо двумерный массив на экран, вам поможет функция print(). Учтите, что если матрица слишком велика для печати, NumPy скроет центральную часть и выведет лишь крайние значения. Дабы увидеть массив полностью, используется функция set_printoptions(). При этом по умолчанию выводятся не все элементы, а происходит вывод только первой тысячи. И это значение массива указывается в качестве аргумента с ключевым словом threshold.
Базовые операции в NumPy
Все действия, производимые над компонентами массива, оборачиваются созданием нового массива. При этом массивы и матрицы взаимодействуют в том случае, если имеют один и тот же размер:
array1 = np.array([[1, 2, 3], [1, 2, 3]])
array2 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
Если выполнить array1 + array2, компилятор скажет об ошибке, а всё потому, что размер первого matrix равен двум, а второго трём.
array1 = np.array([1, 2, 5, 7])
array2 = arange([1, 5, 1])
В данном случае array1 + array2 вернёт нам массив со следующими элементами: 2, 4, 8, 11. Здесь не возникнет ошибки, т. к. матрицы имеют одинаковые размеры. Причём вместо ручного сложения часто применяют функцию, входящую в класс ndarray sum():
np
Достарыңызбен бөлісу: |