За исследование этой практической проблемы взялся молодой инженер Сади Карно


«Проведав, что Природою дано Стать силой движущей Огню, Вошел в историю Карно, Прославив молодость свою…»



бет2/5
Дата07.02.2022
өлшемі152,3 Kb.
#96325
түріЗакон
1   2   3   4   5
Байланысты:
Второй закон термодинамики

«Проведав, что Природою дано
Стать силой движущей Огню,
Вошел в историю Карно,
Прославив молодость свою…»

(Э.Г. Братута)
Сади Карно был сыном своего века. Его теоретические исследования отвечали на конкретный вопрос, поставленный развивающейся промышленностью: как сделать тепловой двигатель более экономичным. Результаты своих исследований он подытожил в работе, вышедшей в 1824 г., «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (об этой работе уже упоминалось выше в 1.2). Появление этой небольшой работы стало началом нового этапа в истории физики не только благодаря полученным в ней результатам, но и благодаря примененному методу, который впоследствии использовался бесчисленное множество раз. В основу своего рассмотрения Карно положил невозможность осуществления вечного двигателя.
Свое исследование Карно начинает с восхваления паровых машин. Он констатирует, что теория этих машин развита очень слабо, и замечает, что для того, чтобы продвинуть ее, нужно несколько оторваться от чисто прикладного аспекта и рассмотреть движущую силу огня в общем виде.
Сади Карно (1796–1832) – французский физик и военный инженер – занимался изучением и усовершенствованием паровых машин, а также изучал теплоту как форму энергии. Карно был первым ученым, начавшим количественное изучение взаимопревращения теплоты и работы, поэтому его с полным правом можно назвать отцом термодинамики. Он ввел важнейшее для термодинамики понятие обратимого процесса и заложил основы второго начала термодинамики. Позднее лорд Кельвин сказал о Карно, что «это был самый глубокий специалист по термодинамике в первой трети XIX века». Карно был очень практичным человеком и считал, что главная цель занятий наукой – приносить пользу людям. 
С помощью мысленного эксперимента Карно доказал, что если исходить из невозможности вечного двигателя, то для получения работы необходимо иметь в машине два тела с различными температурами, причем теплород должен переходить от тела с более высокой температурой к телу с более низкой. Уподобляя теплород воде, а разность температур – разности уровней воды, Карно заключает, что как при падении воды работа измеряется произведением веса воды на разность уровней, так и в паровой машине работа независимо от природы рабочего вещества (вода, спирт и т. д.) измеряется произведением количества теплорода на разность температур. В 1824 году Карно высказал гениальную мысль: для производства работы в тепловой машине необходима разность температур, необходимы два источника теплоты с различными температурами. Иными словами, отдача тепловой машины ограничена значениями температур нагревателя и холодильника. Как подчеркивает Карно, холодильник – столь же необходимый элемент, как и котел, причем если в машине не предусмотрен специальный охлаждающий элемент, то его роль играет окружающая среда. Все это и представляет собой суть «принципа Карно», или второго начала термодинамики, как он стал называться позже, после того как этому разделу физики было придано аксиоматическое построение.
Клаузиусу пришлось защищать принцип Карно (второе начало термодинамики) от многочисленных атак. Он вывел его из другого постулата, который представляется интуитивно более очевидным, чем принятый Карно. Новый постулат Клаузиуса гласит, что теплота не может самопроизвольно переходить от более холодного тела к более горячему без участия третьего тела. Слово «самопроизвольно» стоит здесь, чтобы указать, что если иногда такой переход имеет место, как, скажем, в растворах, в холодильных машинах и т. п., то он в известном смысле «вынужденный», т. е. сопровождается другим, компенсирующим, явлением. Этому новому постулату Клаузиуса вскоре были даны другие эквивалентные формулировки: явления природы необратимы; явления происходят так, что энергия всегда вырождается, и т. п.
В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями этой наиболее общей формулировки.
У. Томсон (лорд Кельвин) предложил в 1851 году следующую формулировку второго закона термодинамики: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу путем охлаждения ее ниже температуры самого холодного из окружающих предметов.
Mакс Планк дал такую формулировку: невозможно построить периодически действующую машину, все действие которой сводилось бы к поднятию некоторого груза и охлаждению теплового источника. Под периодически действующей машиной следует понимать двигатель, непрерывно (в циклическом процессе) превращающий тепло в работу. В самом деле, если бы удалось построить тепловой двигатель, который просто отбирал бы тепло от некоторого источника и непрерывно (циклично) превращал его в работу, то это противоречило бы сформулированному ранее положению о том, что работа может производиться системой только тогда, когда в этой системе отсутствует равновесие (в частности, применительно к тепловому двигателю, когда в системе имеется разность температур горячего и холодного источников).
Уильям Томсон (1824–1907) (в 1892 году за научные заслуги получил титул лорда Кельвина) – известный английский физик оставил после себя 25 книг, 660 научных статей и 70 изобретений в сфере термодинамики, теории электрических и магнитных явлений. Он предложил абсолютную шкалу температур (шкала Кельвина), экспериментально открыл ряд эффектов (в том числе эффект Джоуля–Томсона), установил зависимость периода колебаний контура от его емкости и индуктивности (формула Томсона), изобрел многие электроизмерительные приборы, разработал термодинамическую теорию термоэлектрических явлений, был активным участником осуществления телеграфной связи по трансатлантическому кабелю. В возрасте 27 лет стал членом Лондонского королевского общества.
Если бы не существовало ограничений, накладываемых вторым законом термодинамики, то это означало бы, что можно построить тепловой двигатель при наличии одного лишь источника тепла. Такой двигатель мог бы действовать за счет охлаждения, например, воды в океане. Этот процесс мог бы продолжаться до тех пор, пока вся внутренняя энергия океана не была бы превращена в работу. Тепловую машину, которая действовала бы таким образом, немецкий физикохимик В. Ф. Оствальд (1853–1932) удачно назвал вечным двигателем второго рода (в отличие от вечного двигателя первого рода, работающего вопреки закону сохранения энергии). В соответствии со сказанным формулировка второго закона термодинамики, данная Планком, может быть видоизменена следующим образом: осуществление вечного двигателя второго рода невозможно. Следует заметить, что существование вечного двигателя второго рода не противоречит первому закону термодинамики; в самом деле, в этом двигателе работа производилась бы не из ничего, а за счет внутренней энергии, заключенной в тепловом источнике.
Подчеркнем важную особенность тепловых процессов. Механическую работу, электрическую работу, работу магнитных сил и т. д. можно без остатка, полностью, превратить в теплоту. Что же касается теплоты, то только часть ее может быть превращена в периодически повторяющемся процессе в механическую работу и иные виды работы; другая ее часть неизбежно должна быть передана холодному источнику. В этом суть второго закона термодинамики.
По одному из постулатов У. Томсона невозможно осуществление цикла теплового двигателя без переноса некоторого количества теплоты от источника тепла с более высокой температурой к источнику с более низкой температурой. Из постулата Томсона следует невозможность получения работы в тепловом двигателе, равной отнятому от горячего источника теплу Q 1, т. е. обязательно должно выполняться неравенство L 1.
Но по закону сохранения энергии


Достарыңызбен бөлісу:
1   2   3   4   5




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет