Спектральный анализ — совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др].
В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементарный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.
Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.
Тёмные линии на спектральных полосках были замечены давно (например, их отметил Волластон), но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.
Вскоре выяснилось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г. Кирхгоф и Р. Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.
Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.
Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а в 1861 году — рубидий. Также в 1861 Уильям Крукс при помощи спектрального анализа открыл таллий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы, соответственно).
В 1933 году в Ленинградском институте исторической технологии впервые применили спектральный анализ к древним металлическим изделиям
строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет.
Темные линии появляются, когда электроны, находящиеся на нижних энергетических уровнях атома, под воздействием излучения от источника света одномоментно поднимаются на более высокий уровень, поглощая при этом световые волны определённой длины, и сразу после этого падают обратно на прежний уровень, излучая волны этой же длины обратно — но так как это излучение рассеивается равномерно во всех направлениях, в отличие от направленного излучения от начального источника, на спектрограмме на спектрах видны тёмные линии в месте/местах, соответствующих данной длине/длинам волн. Эти длины волн различаются для каждого вещества и определяются разницей в энергии между электронными энергетическими уровнями в атомах этого вещества.
Количество таких линий для конкретного вещества равно количеству возможных сингулярных вариантов переходов электронов между энергетическими уровнями; например, если в атомах конкретного вещества электроны расположены на двух уровнях, возможен лишь один вариант перехода — с внутреннего уровня на внешний (и обратно), и на спектрограмме для данного вещества будет одна тёмная линия. Если электронных энергетических уровней три, то возможных вариантов перехода уже три (1-2, 2-3, 1-3), и тёмных линий на спектрограмме будет тоже три.
Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.
Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества, необходимого для анализа (в пределах 10—30 мг).
Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000—10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.
Достарыңызбен бөлісу: |