1. Исходные данные 13 Расчет тепловой нагрузки 13



бет2/6
Дата28.11.2022
өлшемі0,68 Mb.
#160121
түріРеферат
1   2   3   4   5   6
Байланысты:
6-v Ar

2.Технологическая часть
2.1 Виды теплообменных аппаратов
Теплообменные аппараты классифицируют по:

  • по конструкции – аппараты, изготовленные из труб (кожухотрубчатые, «труба в трубе», оросительные, погружные, змеевиковые, воздушного охлаждения); аппараты, поверхность теплообмена которых изготовлена из листового материала (пластинчатые, спиральные, сотовые); аппараты с поверхностью теплообмена, изготовленной из неметаллических материалов (графита, пластмасс, стекла и др.);

  • по назначению – холодильники, подогреватели, испарители, конденсаторы;

  • по направлению движения теплоносителей – прямоточные, противоточные, перекрестного тока и др.

В общем выпуске теплообменных аппаратов для химической и смежных отраслей промышленности в РФ около 80% занимают кожухотрубчатые теплообменники. Эти теплообменники достаточно просты в изготовлении и надежны в эксплуатации и в то же время достаточно универсальны.
Теплообменники типа «труба в трубе» и змеевиковые стальные в общем объеме теплообменной аппаратуры составляют около 8%, а оросительные из чугуна – около 2%.

2.2 Кожухотрубчатые теплообменники

Рис.1. Кожухотрубчатый теплообменник
Кожухотрубчатые теплообменники относятся к наиболее распространенным. Их применяют в промышленности и на транспорте в качестве нагревателей, конденсаторов, охладителей, для различных жидких и газообразных сред. Основными элементами кожухотрубчатого теплообменника являются: кожух (корпус), трубный пучок, камеры-крышки, патрубки, запорная и регулирующая арматура, контрольная аппаратура, опоры, каркас. Кожух аппарата сваривают в виде цилиндра из одного или нескольких, обычно стальных листов. Толщина стенки кожуха определяется максимальным давлением рабочей среды в межтрубном пространстве и диаметром аппарата. Днища камер могут быть сферическими сварными, эллиптическими штампованными и реже – плоскими. Толщина днищ не должна быть меньше толщины корпуса.
Предпочтительнее вертикальное расположение корпуса и всего теплообменника, так как в этом случае уменьшается площадь, занимаемая аппаратом, и более удобно расположение его в рабочем помещении.

Рис. 2. Трубные пучки кожухотрубчатых теплообменников
Трубный пучок теплообменника может быть собран из гладких стальных бесшовных, латунных или медных прямых или U- и W-образных труб диаметром от нескольких миллиметров до 57 мм и длиной от нескольких сантиметров до 6–9 м с диаметром корпуса до 1,4 м и более. Внедряются, особенно в холодильной технике и на транспорте, образцы кожухотрубчатых и секционных теплообменников с низкими накатными продольными, радиальными и спиральными ребрами. Высота продольного ребра не превышает 12–25 мм, а высота выступа катаных труб 1,5–3,0 мм при 600–800 ребрах на 1 м длины. Внешний диаметр труб с низкорадиальными (накатными) ребрами мало отличается от диаметра гладких труб, хотя поверхность теплообмена при этом возрастает в 1,5–2,5 раза. Форма такой поверхности теплообмена обеспечивает высокую тепловую эффективность аппарата при рабочих средах с различными теплофизическими свойствами.
В зависимости от конструкции пучка как гладкие, так и накатные трубы закрепляют в одной или двухтрубных решетках развальцовкой, разбортовкой, сваркой, спайкой или сальниковыми соединениями. Из всех перечисленных способов реже применяют более сложные и дорогостоящие сальниковые уплотнения, допускающие при тепловых удлинениях продольное перемещение труб.

Рис. 3. Способы закрепления и размещения труб в трубных решетках: а – развальцовкой; б – развальцовкой с отбортовкой; в – развальцовкой в очках с канавками; г и д – приваркой; е – с помощью сальника; 1 – по сторонам и вершинам правильных шестиугольников (треугольников); 2 – по концентрическим окружностям; 3 – по сторонам и вершинам квадратов; 4 – по сторонам и вершинам шестиугольников со смещенной на угол β диагональю.
Размещение труб в трубных решетках (рис. 3.) может быть осуществлено несколькими способами: по сторонам и вершинам правильных шестиугольников (шахматное), по сторонам и вершинам квадратов (коридорное), по концентрическим окружностям и по сторонам и вершинам шестиугольников со смещенной на угол β диагональю. Преимущественно трубы размещаются равномерно на всей площади решетки по сторонам и вершинам правильных шестиугольников. В аппаратах, предназначенных для работы на загрязненных жидкостях, часто принимают прямоугольное размещение труб для облегчения очистки межтрубного пространства.
В горизонтальных кожухотрубчатых теплообменниках–конденсаторах с целью уменьшения термического сопротивления на внешней поверхности труб, вызываемого пленкой конденсата, трубы рекомендуется размещать по сторонам и вершинам шестиугольника со смещенной на угол β диагональю, оставляя при этом в межтрубном пространстве свободные проходы для пара.
Некоторые варианты компоновки трубных пучков в корпусе приведены на (рис. 4.). Если обе решетки пучка из прямых труб зажимаются между верхними и нижними фланцами корпуса и крышек, то такой аппарат будет жесткой конструкции (рис.4. а, б). Теплообменники жесткой конструкции применяются при сравнительно небольшой разности температур между корпусом и трубами (примерно 25–30° С) и при условии изготовления корпуса и труб из материалов с близкими значениями их коэффициентов удлинения. При проектировании аппарата необходимо рассчитывать напряжения, возникающие вследствие тепловых удлинений труб в трубной решетке, особенно в местах соединения труб с решеткой. По этим напряжениям в каждом конкретном случае определяют пригодность или непригодность аппарата жесткой конструкции. Возможные варианты кожухотрубчатых теплообменников нежесткой конструкции показаны также на (рис. 4., в, г, д, е).

Рис. 4. Схемы кожухотрубчатых теплообменников: а – с жестким креплением трубных решеток с сегментными перегородками; б – с жестким креплением трубных решеток с кольцевыми перегородками; в – с линзовым компенсатором на корпусе; г – с U-образными трубами; д – с двойными трубами (труба в трубе); е – с «плавающей» камерой закрытого типа; 1 – цилиндрический корпус; 2 – трубы; 3 – трубная решетка; 4 – верхняя и нижняя камеры; 5, 6, 9 – сегментная, кольцевая и продольная перегородки в межтрубном пространстве; 7 – линзовый компенсатор; 8 – перегородка в камере; 10 – внутренняя труба; 11 – наружная труба; 12 – «плавающая» камера.
В теплообменниках с U-образными (рис.4., г), а также с W-образными трубами оба конца труб закрепляют в одной (чаще в верхней) трубной решетке. Каждая из труб пучка может свободно удлиняться независимо от удлинения других труб и элементов аппарата. При этом в местах соединений труб с трубной решеткой и в соединении трубной решетки с корпусом не возникает никаких напряжений. Эти теплообменники пригодны для работы при высоких давлениях теплоносителей. Однако аппараты с гнутыми трубами не могут быть признаны лучшими из-за трудности изготовления труб с разным радиусом изгиба, сложности замены и неудобства очистки гнутых труб.
В кожухотрубчатых теплообменниках с двойными трубами (рис.4., д) каждый элемент состоит из двух труб: наружной – с закрытым нижним концом и внутренней – с открытым концом. Верхний конец внутренней трубы меньшего диаметра закрепляют развальцовкой или сваркой в верхней трубной решетке, а трубу большего диаметра – в нижней трубной решетке. При таких условиях монтажа каждый из элементов, состоящий из двух труб, может свободно удлиняться без возникновения тепловых напряжений. Нагреваемая среда движется по внутренней трубе, затем по кольцевому каналу между наружной и внутренней трубами. Тепловой поток от греющей к нагреваемой среде передается сквозь стенку внешней трубы. Кроме того, в процессе переноса теплоты участвует и поверхность внутренней трубы, потому что температура нагреваемой среды в кольцевом канале выше температуры той же среды во внутренней трубе.


Расчет



Достарыңызбен бөлісу:
1   2   3   4   5   6




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет