§14
1. А=13n+8=15n, яғни n=4, A=60.
2. a=7х+х, а=8х, мұндағы 0<х<7, яғни х мына мәндерді қабылдайды 1,2,3,4,5,6. Онда а=8,16,24,32,40,48.
3. 5-ке бөлгенде әртүрлі бес қалдық қалуы мүмкін: 0,1,2,3,4. Алты сан болғандықтан, қалдықтары бірдей болатын екі сан табылады (Дирихле принципі), олардың айырмасы 5-ке бөлінеді.
4. а= =2х+1 – тақ сан. 6-ға бөлгенде келесі қалдықтар қалуы мүмкін: 0,1,2,3,4,5; олардың тақтары 1,3,5.
(5. енді ізделінді санды 6у+1, немесе 6у+3, немесе 6у+5 түрінде жазуға болады. Бірінші өрнекті 3-ке бөлгенде 2 қалдық қалады. Демек, санның түрі6у+5 және 6-ға бөлгенде 5 қалдық қалады.).
5. а=10х+8, а=12y+8, демек, егер 8 қиярдыалып қойсақ, онда а 10-ға және 12-ге, яғни 60-қа бөлінеді. 300-ден артық 400-ден кем сандардың ішінде 360 қана шарттарды қанағаттандырады. Сонымен 368 қияр болған. 300 саны 60-қа бөлінетіндіктен, 308 саны да есептің шешімі болады. Олай болса, 308 немесе 368.
6. Егер ізделінді санға 1-ді қоссақ, онда ол 2-ге, 3-ке, 4-ке, 5-ке, 6-ға, яғни 60-қа бөлінеді. 60-қа бөлінетін сандардың арасынан, 1-ге кем 7-ге еселік болатын санды табу оңай, ол 119 саны.
7. Егер ізделінді саннан 1-ді шегерсе, онда ол 2-ге, 3-ке, 4-ке бөлінеді. Ол қасиетке ие болатын ең кіші сан 12. 12 , 24, 48, 60, 72, 85,
96 сандарының арасынан керегін аламыз. Есептің шартын екі сан ғана қанағаттандырады: 255 және 85. бірақ 25 жарамайды, себебі шарт бойынша сабақ үш сыныпта да болған жоқ. Сонымен оқушылар саны – 85.
8. х – санамақтағы сөздер саны болсын. Санаушы өзінен бастағанда, бірінші айналымда шығып қалмас үшін, сөз саны 5- ке бөлгенде 1 қалдық қалмайтын болсын. Осыған ұқсас, ол екінші және үшінші айналымда шығып қалмас үшін х санын 4-ке және 3-ке бөлгенде қалдықта 1 қалмау керек (әр жаңа айналымда санаушы өзінен бастайды). Санаушы соңғы айналымда бастаушы болу үшін, х саны жұп болу керек. Ең кіші жұп сан – 2, бірақ ойыншылар санынан сөз саны артық болатындықтан, ізделінді ең кіші сан 8 болады.
Достарыңызбен бөлісу: |