Барлығы – 90 сағат


Негізгі және қосымша әдебиеттер



бет2/28
Дата05.06.2017
өлшемі3,47 Mb.
#18035
1   2   3   4   5   6   7   8   9   ...   28

Негізгі және қосымша әдебиеттер
[1]. Гельфанд И. М., Лекции по линейной алгебре, М., 1971

[2]. Ильин В. А., Позняк Э. Г., Линейная алгебра, М., 1978

[3]. Калужнин Л. А., Введение в общую алгебру, М., 1973

[4]. Кострикин А. И., Введение в алгебру (часть 2), М., 2001

[5]. Курош А. Г., Курс высшей алгебры, М., 1971

[6]. Ляпин Е. С., Евсеев А.Е., Алгебра и теория чисел (часть 2), М., 1978

[7]. Мальцев А. И., Основы линейной алгебры, М., 1970

[8]. Петрова В. Т., Лекции по алгебре и геометрии (часть 2), М., 1999

[9]. Пизо Ш., Заманский М., Курс математики. Алгебра (пер.с франц.),1971

[10]. Проскуряков И. В., Сборник задач по линейной алгебре, М., 1974

[11]. Сборник задач по алгебре (под редакцией А.И.Кострикина), М., 1987

[12]. Сызықтық алгебра элементтері (методикалық талдау), Құрастырған

Т. Б. Бұлабаев, А., 1992

[13]. Саханов Н., ЖаңбырбаевБ., Жоғары математика, А., 1993

[14]. Судоплатов С.В., Овчинникова Е.В., Элементы дискретной математики

( учебник для ВТУЗов ), Новосибирск, 2002



[15]. Степанова Л. И., Курс линейной алгебры, Саратов, 2005
3. Пән бойынша тапсырмаларды орындау және тапсыру кестесі




Жұмыс түрі

Тапсырманың мақсаты мен мазмұны


Ұсынылатын әдебиеттер

Орындау мерзімі және тапсыру уақыты (аптасы)

Балл

Бақылау түрі

1

Үй тапсырмасы (СОЖӨЖ)

Сараптау және танымал қабілетін дамыту


Силлабус бойынша тақырыпқа арналған әдебиеттер

Әр апта сайын СОӨЖ тақырыбы бойынша кестеге сәйкес

15*2=30

Тапсырмалардың орындалуын, сұрақтарға жауап беру қабілетін тексеру

2

Жеке тапсырма

өткен тақырыпты бекіту

Силлабуста көрсетілген

11 бөлімде көрсетілген

2+2=4

Тапсырмалардың орындалуын тексеру

3..

коллоквиум

Теориялық сұрақтарды тексеру

Силлабуста көрсетілген

11 бөлімде көрсетілген

2+3=5

ауызша

4

Бақылау жұмысы

Күрднлу есептерді шығару қабілетін арттыру

Силлабуста көрсетілген

11 бөлімде көрсетілген

3+3=6

жазбаша

5

Практикалық жұмыс

Тақырыптар бойынша есептер шығару әдістерін қарастыру

Силлабуста көрсетілген

11 бөлімде көрсетілген

15*1=15

жазбаша



4. ПӘННІҢ ОҚУ-ӘДІСТЕМЕЛІК ҚАМТЫЛУ КАРТАСЫ





Әдебиет атауы


Барлығы


Ескерту


кітапханада


кафедрада


Студенттердің қамтылу пайызы (%)

Электронды түрі


1

2

3

4

5

6

7




1

Гельфанд И. М., Лекции по линейной алгебре, М., 1971

5 экз.




20








2

Ильин В. А., Позняк Э. Г., Линейная алгебра, М., 1978

50 экз.




70








3

Калужнин Л. А., Введение в общую алгебру, М., 1973

5 экз.




20








4

Кострикин А. И., Введение в алгебру (часть 2), М., 2001


Ч.2 - 10 экз.






40








5

Курош А. Г., Курс высшей алгебры, М., 1971

50 экз.




100








6

Ляпин Е. С., Евсеев А.Е., Алгебра и теория чисел (часть 2), М., 1978

15 экз.




45








7

Мальцев А. И., Основы линейной алгебры, М., 1970

алгебре, М., 1974



30 экз.





80








8

Петрова В. Т., Лекции по алгебре и геометрии (часть 2), М., 1999

15 экз.




45








9

Пизо Ш., Заманский М., Курс математики. Алгебра (пер.с франц.),1971

1 экз.




3








10

Проскуряков И. В., Сборник задач по линейной

26 экз.




65








11

Сборник задач по алгебре (под редакцией А.И.Кострикина), М., 1987

30 экз.




80








12

Сызықтық алгебра элементтері (методикалық талдау), Құрастырған

Т. Б. Бұлабаев, А., 1992



5 экз.




20








13

Высшая математика Компьютерная математика электронный учебник










matclub.ru




14

ВЫСШАЯ МАТЕМАТИКА электронные учебники










www.mathelp.spb.ru/magazin.htm




15

Руководство к решению задач по математическому анализу










www.storedbooks.com

На сайте можно бесплатно скачать

16

Электронные учебные пособия, методические материалы и научные монографии по ... учебно-информационные комплексы по математике










samlawin.ru/cdo/.../st_links.html





5. Дәрістік кешен. (Дәріс тезистері, көрнекілік, таратылу материалдары)
1 дәріс

Тақырыбы: Сызықтық кеңістік ұғымы

Қарастырылатын сұрақтар:

  1. Өрісте берілген сызықтық кеңістіктің анықтамасы, аксиомалары

2. Сызықтық кеңістіктің мысалдары

3. Өріске байланысты сызықтық кеңістіктің түрлері



Дәрістің мақсаты: Сызықтық кеңістік ұғымымен таныстыру.

Дәрістің мазмұны: Өрісте берілген векторлық кеңістік деп бір БАО (қосу), өрістің скалярларына көбейту амалдары берілген, 8 шартқа бағынатын алгебраны айтады. Ол шарттарды векторлық кеңістіктің аксиомалары дейді. Ол аксиомаларға қосудың коммутативтік, ассоциативтік қасиеттері, нөлдік, қарама-қарсы элементтердің болуы, скалярға көбейту амалына қатысты екі жақты дистрибутивтік қасиеттері жатады. Егер берілген өріс R, C өрістері- нің бірі болса, векторлық кеңістікті, сәйкесінше, нақты кеңістік, комплекс кеңістік деп атайды. Векторлық кеңістіктің мысалдар мыналар: 1) берілген өрістің негізгі жиынының декарттық n дәрежесі болатын жиын кортеждерді қосу мен өріс элементіне көбейту амалдары арқылы; 2) жазық- тықтағы бір нүктеден шығатын бағытталған кесінділер жиыны оларды пара- ллелограмм ережесі бойынша қосу, санға көбейту амалдары арқылы; 3) эле- менттері нақты сандар болатын n-ші ретті квадрат матрицалар жиыны матрицаларды қосу мен нақты санға көбейту амалдары арқылы; 4) нақты сандардың шексіз тізбектерінің жиыны тізбектерді мүшелеп қосу мен нақты санға көбейту амалдары арқылы. Бірінші мысалдағы кеңістікті әдетте n-өлшемді арифметикалық векторлық кеңістік деп атайды.
Өзін-өзі тексеру сұрақтары:

  1. Өрісте берілген сызықтық кеңістіктің анықтамасы, аксиомалары

2. Сызықтық кеңістіктің мысалдары

3. Өріске байланысты сызықтық кеңістіктің түрлері



Пайдаланылатын әдебиеттер: [2] 2-тарау,§1, [7)] 2-тарау, §4

2 дәріс



Тақырыбы: Ішкі кеңістіктер

Қарастырылатын сұрақтар:

  1. Ішкі кеңістіктің анықтамасы, мысалдары, критериі

  2. Ішкі кеңістіктерге амалдар қолдану

  3. Ішкі кеңістіктердің тура қосындысы

Дәрістің мақсаты: Ішкі кеңістік түсінігін меңгерту

Дәрістің мазмұны:

Егер берілген өріс R, C өрістері- нің бірі болса, векторлық кеңістікті, сәйкесінше, нақты кеңістік, комплекс кеңістік деп атайды. Векторлық кеңістіктің мысалдар мыналар: 1) берілген өрістің негізгі жиынының декарттық n дәрежесі болатын жиын кортеждерді қосу мен өріс элементіне көбейту амалдары арқылы; 2) жазық- тықтағы бір нүктеден шығатын бағытталған кесінділер жиыны оларды пара- ллелограмм ережесі бойынша қосу, санға көбейту амалдары арқылы; 3) эле- менттері нақты сандар болатын n-ші ретті квадрат матрицалар жиыны матрицаларды қосу мен нақты санға көбейту амалдары арқылы; 4) нақты сандардың шексіз тізбектерінің жиыны тізбектерді мүшелеп қосу мен нақты санға көбейту амалдары арқылы. Бірінші мысалдағы кеңістікті әдетте n-өлшемді арифметикалық векторлық кеңістік деп атайды.



Векторлық кеңістіктің ішкі жиыны мына шарттарды қанағаттандырғанда ішкі кеңістік болады:

  1. Векторларды қосу амалына байланысты тұйық болғанда,

  2. Векторды скалярға көбейту – сыртқы амалына қатысты тұйық болғанда

Жиындар арасындағы бейнелеулер тегінде бинарлық қатыстардан (БҚ) алынатыны белгілі. Жиынның түріне және БҚ-ң өзіне байланысты олар төмендегіше классификацияланады.



Өзін-өзі тексеру сұрақтары:

  1. Ішкі кеңістіктің анықтамасы, мысалдары, критериі

  2. Ішкі кеңістіктерге амалдар қолдану

  3. Ішкі кеңістіктердің тура қосындысы


Пайдаланылатын әдебиеттер: [2] 2-тарау,§3, [7] 2-тарау, §6
3 дәріс

Тақырыбы: Сызықтық оператор ұғымы

Қарастырылатын сұрақтар:

1. Сызықтық кеңістікте берілген оператордың анықтамасы



  1. Оператордың сызықтық болу шарттары

  2. Анықтамадан шығатын салдарлар


Дәрістің мақсаты: Сызықтық оператор ұғымын меңгерту

Дәрістің мазмұны:

Анықтама. Өрісте берілген векторлық кеңістікті өз-өзіне бейнелеу, яғни оны түрлендіру, осы кеңістіктегі оператор деп аталады. Егер оператор аддитивті және біртекті болса, онда оны сызықтық деп атайды. Оператордың сызықтық болу шартын жалпы түрде былайша жазуға болады:


(

Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   28




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет