Достоверность передачи сообщений и надежность систем Помехи и помехоустойчивость систем


Комплексная оценка помехоустойчивости приемника элементарных и сложных сигналов



бет4/14
Дата01.07.2020
өлшемі0,82 Mb.
#74747
1   2   3   4   5   6   7   8   9   ...   14
Байланысты:
bestreferat-109360

Комплексная оценка помехоустойчивости приемника элементарных и сложных сигналов. Помехоустойчивость приемника к действию флуктуациониых помех оценивают исходя из кривой плотности распределения напряжения помехи на входе приемника, описываемой выражением (1). Вероятности ошибок и определяются соответственно по формулам (5) и (6). Эти значения не будут точно соответствовать помехоустойчивости реального приемника, так как в расчетах не учитываются время превышения помехой порогового уровня и инерционность приемника.

С другой стороны, при защите от импульсных помех инерционность приемника является одним из главных свойств, позволяющих отделять сигнал от более коротких импульсов помех. Однако параметры распределения импульсных помех по амплитуде, длительности, времени появления и числу импульсов в единицу времени обычно неизвестны. Одним словом, расчеты помехоустойчивости приемников при действии флуктуационных или импульсных помех приблизительны.



Очень трудно сравнить характеристики приемников разных типов, так как изменение их параметров неизвестным образом меняет характер распределения помех на входе. Однако помехоустойчивость приемников можно сравнить, если исходить из комплексной оценки свойств самого приемника, не касаясь характера распределения помех. Такой характеристикой может быть пороговая энергия, т. е. величина, равная произведению пороговых значений напряжения , тока и времени , необходимых для переключения приемника из одного состояния в другое:
.

Действительно, чтобы приемник перешел из состояния 0 в состояние 1, необходимо на его входе иметь напряжение более , развивающее ток, превышающий или равный на время переключения приемника. Если хотя бы одна величина не достигает порогового значения, изменения состояния не произойдет. Для возврата приемника в исходное состояние 0 один из параметров (U,I,T) должен уменьшиться до значения ниже порогового ()

Таким образом, любой приемник характеризуется опреде-ленной пороговой энергией на переход в состояние 1 () и 0 ().



Обычно . Их разность характеризует коэффициент возврата приемника. При = приемник будет давать наименьшее число ошибочных переходов.

На рис. 9 даны значения пороговой энергии включения и выключения для логических элементов, наиболее распространенных в системах железнодорожной автоматики и телемеханики.



Из сравнения значений этих величин видно, насколько обостряется проблема помехоустойчивости с переходом на более совершенные элементы.

Для правильной оценки помехоустойчивости реального приемника необходимо иметь статистические данные о длительностях превышения пороговых уровней данного приемника. Пересчет имеющихся данных для другого вида приемника затруднителен и неэффективен. Это объясняется тем, что мощность помех на входе приемника зависит от соотношения входного сопротивления приемника, сопротивления тракта передачи и внутреннего сопротивления источника помех. К тому же у большинства приемников наблюдается нелинейная зависимость между входными напряжением и током.



Точно определить помехоустойчивость того или иного приемника можно только при получении распределения времени его срабатывания от помех. Для этого на выход приемника необходимо подключить на определенное время анализатор длительностей импульсов. Такое распределение позволяет правильно определить меры повышения помехоустойчивости.

Повысить помехоустойчивость можно увеличением любого порогового значения приемника ( ) отдельно или в совокупности. Наибольшего эффекта можно добиться увеличением , т.е. повышением инерционности приемника.

В железнодорожных системах автоматики имеются существенные резервы увеличения пропускной способности каналов, что позволяет снижать быстродействие приемников для повышения их устойчивости к помехам.

Если принятые меры повышения помехоустойчивости приема элементарных сигналов не могут считаться достаточными для системы телемеханики, используют методы передачи сложных избыточных сигналов. Такой сигнал, состоящий из определенной совокупности элементарных сигналов, позволяет, с одной стороны, увеличить различия в свойствах сигнала и помехи, а с другой — повысить разность энергии между ними. Поэтому при приеме проводится оптимальная обработка не только каждого импульса, но и всей совокупности импульсов сложного сигнала.

В телемеханических системах нашли применение следующие способы организации избыточности в сигналах:

многократная передача неизбыточных сигналов (кодовых комбинаций или символов):

однократная передача избыточных кодовых комбинаций;

передача избыточных комбинаций заданное число раз или до правильного результата.

По первому способу неизбыточные сигналы могут передаваться определенное число раз или циклически. В любом случае на приемном конце решение о значении сигнала должно быть принято на основе оценки суммы п отсчетов смеси сигнала а и помехи, т.е. если в приемник поступают,


, , ,…, , тогда

.
Таким образом, п-кратное повторение сигнала приводит к увеличению его энергии в п раз, а среднее значение случайной помехи с ростом п стремится к нулю. Отсюда следует, что изменением числа повторений можно добиться любой помехоустойчивости.

При втором способе, при однократной передаче, в зависимости от числа избыточных элементов в кодовой комбинации приемник может обнаружить или обнаружить и исправить ошибку, т.е. постоянная избыточность сложного сигнала определяет его помехоустойчивость. Если есть возможность использовать обратную связь между приемником и передатчиком, то по третьему способу можно добиться более высокой эффективности и помехоустойчивости передачи, чем в предыдущем случае.

В зависимости от того, где принимается решение о правильном приеме, различают системы с решающей обратной связью (РОС) и с информационной обратной связью (ИОС).

В системах с РОС решение о значении сигнала выносит приемник и по каналу обратной связи подает сигнал подтверждения (квитирования), а при обнаружении ошибки требует повторения передачи.

В системах с ИОС приемник является пассивным, а принятый сигнал (в прямом или инверсном виде) возвращается по обратному каналу к передатчику, который сравнивает его и принимает решение об исполнении или повторе сигнала.

При использовании РОС или ИОС избыточность в сигналах оказывается меньше, чем в корректирующих кодах.

На электрифицированных линиях железных дорог в каналах систем ДЦ могут действовать гармонические помехи, сосредоточенные по спектру. Защита от их действия особенно актуальна на участках с электротягой на переменном токе.

В современных компьютерных системах ДЦ помехоустойчивость при действии гармонических помех может быть повышена следующими способами:

применением режекторных фильтров, настроенных на сосредоточенные помехи и уменьшающих их влияние на приемник;

использованием шумоподобных сигналов (ШПС), представляющих собой цифровые последовательности определенной длины, перемножаемые с информационными сигналами для введения избыточности и искусственного расширения полосы частот информационного цифрового сигнала. В этом случае применение на приеме метода ШОУ и обратное преобразование ШПС позволяют получить требуемую достоверность информации.





Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   14




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет