Достоверность передачи сообщений и надежность систем
1. Помехи и помехоустойчивость систем
Любые сигналы телемеханических систем состоят из той или иной совокупности импульсов, передаваемых по каналу связи. Правильное опознание сигналов на приемной стороне означает верный (достоверный) прием переданного сообщения. Это возможно в том случае, если принимаемые импульсы искажены не настолько, чтобы приемное устройство не различило импульсных признаков сигналов логических 1 и 0. При передаче кодовой комбинации достоверный прием возможен, если число ошибок в опознании сигналов 1 и 0 не превысило корректирующих возможностей кода.
Причин, ведущих к ошибкам в определении импульсных признаков принимаемых импульсов, достаточно много, но они могут быть разделены на две группы:
аппаратурные искажения, вызванные нестабильностью параметров элементов устройств;
искажения сигналов помехами в канале связи. В конечном счете безразлично, отчего произошла ошибка в приеме телемеханических каналов, однако выявление ее истинных причин необходимо для правильного выбора защитных мер при проектировании и регулировании устройств, тем более что последствия от искажений сигналов могут быть существенно различны. Например, при приеме телемеханического сигнала из-за ошибок в опознании символов может не произойти реализации команды (защитный отказ) или выполнится другая команда (трансформация команды). Более того, при отсутствии какой-либо передачи сигнала помехи могут воздействовать на приемник и воспроизвести сигнал (ложная команда).
Таким образом, процесс приема сигналов в любой системе телемеханики имеет вероятностный характер, т.е. всегда вероятность правильного приема
= 1 - = 1 – ( + )
где: Рош — вероятность ошибочного приема: Рзо — вероятность защитного отказа; — вероятность трансформации команды.
Системы телемеханики по назначению делятся на три катего- рии. Железнодорожные системы телемеханики относятся к категории 1 по достоверности и имеют еще ряд других специфических требований.
В соответствии с ГОСТ 26.205 — 83 по достоверности передачи комплексы (кроме устройств телеизмерения с аналоговыми сигналами) должны соответствовать требованиям, приведенным табл.1 для каждой из функций отдельно при наличии в канале связи нормального флуктуационного шума и при отношении амплитуды сигнала к эффективному значению шума на входе приемного устройства, равном семи.
При использовании стандартных каналов связи и отсутствии устройствах телемеханики встроенной аппаратуры таких каналов требования таблицы должны выполняться при вероятности искажения элементарного сигнала 10 и независимых ошибках.
Таблица
Вероятностная характеристика
|
Вероятность события Р, не более, в зависимости от категории комплекса
|
1
|
2
|
3
|
Вероятность трансформации:
Команды контрольной информации ТС
знака буквенно-цифровой информации или отсчета кодового телеизмерения
|
|
|
|
Вероятность отказа от исполнения посланной команды (допускается повторение передачи до 5 раз)
|
|
|
|
Вероятность потери:
контрольной информации ТС
при спорадической передаче
(допускается повторение передачи до 5 раз)
команды
|
|
|
|
Вероятность образования ложной команды или контрольного сообщения при отсутствии передачи или ее прекращении
|
|
|
|
Мешающие факторы, существующие при передаче сигналов ТМ, могут вести к следующим искажениям исходного импульса (рис. 1, а): искажения фронтов импульсов (рис.1, б), смещение, изменение крутизны и тому подобные краевые искажения (рис.1, в); изменения длительности импульсов и пауз (рис. 1, г); дробление одного импульса на части без изменения (рис. 1, д) и с изменением (рис. 1, е) параметров или появление дополнительных импульсов в паузе ( рис. 1, ж).
Указанные внешние искажения импульсов являются чаще всего результатом наложения внешних помех или определяются фазочастотными характеристиками канала передачи телемеханических сигналов. Фазочастотные искажения вызываются неодинаковыми условиями прохождения гармонических составляющих по каналу из-за наличия в нем большого числа сосредоточенных и распределенных реактивных сопротивлений, которые существенно зависят от частоты.
Искажения сигналов по фазе и частоте могут оказаться линейными, т.е. без дополнительных частотных составляющих в спектре принимаемого сигнала, и нелинейными, что зависит от характера сопротивлений в канале передачи. При правильном проектировании системы телемеханики влияние фазочастотных характеристик канала на принимаемые сигналы может быть сведено к минимуму.
Главной причиной искажения телемеханических сигналов являются внешние помехи: чем меньше их влияние на приемные устройства, тем выше достоверность передачи. Но поскольку разработчики систем телемеханики не могут влиять на уровень внешних помех, они повышают помехоустойчивость систем.
Если в канале связи кроме напряжения передатчика телемеханических сигналов существуют какие-либо другие напряжения, то все они в той или иной мере действуют на вход приемника и, следовательно, являются помехами. Реакция приемника на сигнал с помехами зависит от характера их взаимодействия. Различают два вида такого взаимодействия:
амплитуды сигнала S(t) и помех (t) складываются, т. е. x(t) = = S(t) + (t). В этом случае помехи являются аддитивными;
результирующая амплитуда равна произведению амплитуд сигнала и помехи, т.е. x(t) = S(t) (t) . Помехи являются мультипликативными. Они могут вызываться изменениями коэффициентов усиления и параметров канала связи.
Для систем телемеханики характерными являются аддитивные помехи, которые по характеру действия во времени на вход приемника принято разделять на импульсные и флуктуационные.
Если переходные процессы в приемнике от импульса помехи успевают закончиться до поступления следующего импульса помех, считается, что на входе приемника действуют импульсные помехи (рис.2, а). Если на входе приемника непрерывно действует напряжение помех со случайной амплитудой, помехи называют флуктуационными или гладкими (рис.2, б). Характерной особенностью гладких помех является отсутствие амплитуды, более чем в 3 раза превышающей среднюю.
Фильтрацией сигнала на входе приемника, т.е. изменением полосы пропускания, можно импульсные помехи линии связи превратить во флуктуационные, так как время установления переходных процессов обратно пропорционально полосе пропускания.
Аддитивные помехи в канале могут быть внутренними или внешними. Внутренние помехи являются принципиально неустранимыми, так как представляют собой шум, возникающий из-за разных физических явлений (тепловой, гальванический эффекты и т.п.) в электрических цепях канала.
Рис.2. Импульсные и флуктуационные помехи
Обычно уровень шумов намного ниже возможных уровней телемеханических сигналов и не оказывает заметного влияния на работу систем. Внешние аддитивные помехи возникают в результате коммутационных процессов в электрических цепях, имеющих электромагнитную связь с каналом передачи сигналов, а также от грозовых разрядов в атмосфере.
Для аналитического описания аддитивных помех широко используется теория стационарных случайных процессов, т.е. функций, вероятностные характеристики которых не зависят от времени. Флуктуационная помеха на входе приемника представляет собой непрерывный случайный сигнал U(t). Для оценки мгновенных значений помехи из интегральной характеристики распределения плотности вероятности (рис.3) определяется вероятность появления того или иного напряжения, т.е. плотность вероятности того, что мгновенное значение нап-ряжения флуктуационной помехи Un лежит в пределах от U до U + U.
Рис.3 Распределение плотности вероятности помех
Плотность вероятности напряжения флуктуационных помех подчиняется закону нормального распределения (распределения Гаусса)
— среднее квадратичное значение переменной составляющей напряжения на интервале Т; а — среднее значение (постоянная составляющая) случайного напряжения (обычно для флуктуационных помех а = 0).
Для описания импульсных помех, действующих в канале связи систем телемеханики, также используются вероятностные характеристики, но их получение связано с большими трудностями. Это объясняется необходимостью иметь распределения импульсных помех по амплитуде, длительности, времени и т.п. Поэтому помехоустойчивость систем телемеханики чаще всего определяют относительно флуктуационных помех.
Достарыңызбен бөлісу: |