Пример 3. Составить различные размещения по 2 из элементов множества ; подсчитать их число.
Решение. Из трех элементов можно образовать следующие размещения по два элемента: , , , , , . Согласно формуле (1) их число: = 3·2 = 6 .
Перестановками из элементов называются размещения из элементов по элементов, отличающиеся друг от друга лишь порядком элементов.
Число перестановок из элементов обозначается символом и вычисляется по формуле
. (3)
Пример 4. Составить различные перестановки из элементов множества ; подсчитать их число.
Решение. Из элементов данного множества можно составить следующие перестановки: (2,7,8); (2,8,7); (7,2,8); (7,8,2); (8,2,7); (8,7,2). По формуле (3) имеем: = 3! = 1·2·3 = 6 .
Сочетаниями из элементов по элементов называются соединения, каждое из которых состоит из элементов, взятых из данных элементов. Эти соединения отличаются друг от друга хотя бы одним элементом. В отличие от размещений, порядок следования элементов здесь не учитывается.
Число сочетаний из элементов по элементов обозначается символом и вычисляется по формуле
. (4)
С помощью сочетаний можно записать формулу бинома Ньютона:
.
Числа , являются биномиальными коэффициентами и для них выполняется следующее условие .
Пример 5. Составить различные сочетания по 2 из элементов множества ; подсчитать их число.
Решение. Из трех элементов можно образовать следующие сочетания по два элемента: , , . Их число: .
Достарыңызбен бөлісу: |