Регистрация — выявление определенного качества у явлений данного класса и подсчет количества по наличию или отсутствию данного качества (например, количество успевающих и неуспевающих учеников и т. п.).
Ранжирование — расположение собранных данных в определенной последовательности (убывания или нарастания зафиксированных показателей), определение места в этом ряду изучаемых объектов (например, составление списка учеников в зависимости от числа пропущенных занятий и т. п.).
Шкалирование — присвоение баллов или других цифровых показателей исследуемым характеристикам. Этим достигается большая определенность. Известны четыре основные градации измерительных шкал: 1) шкалы наименований (или номинальные); 2) шкалы порядка (или ранговые); 3) интервальные шкалы; 4) шкалы отношений.
Шкалы наименований — самые «слабые» шкалы. Числа и другие обозначения в них используются чисто символически. Они, по сути, представляют собой наименования какого-либо класса объектов. Их единственная математическая характеристика — принадлежность: принадлежит ли исследуемый объект к данному классу или нет. Примерами номинальных шкал можно считать классификации по различным признакам — список специальностей, перечисление характеристик учеников, причин неуспеваемости и т. д.
В порядковых (ранговых) шкалах устанавливается порядок следования, отношения «больше» и «меньше», общая иерархия. Примерами их применения служит ранжирование типа «выше ростом», «больше пятерок», «меньше пропусков» и т. д.
«Сильные» шкалы — интервальная и шкала отношений — обладают всеми положительными качествами «слабых» шкал, но при этом интервальная шкала предусматривает определенные расстояния между отдельными (двумя любыми) числами на шкале, а в шкале отношений, кроме того, определена еще и нулевая точка (точка отсчета). Шкалы термометров, вольтметров, конечно, «сильные».
Все более мощным преобразующим средством педагогических исследований становится моделирование. Научная модель — это мысленно представленная или материально реализованная система, которая адекватно отображает предмет исследования и способна замещать его так, что изучение модели позволяет получить новую информацию об этом объекте. Моделирование — это метод создания и исследования моделей. Главное преимущество моделирования — целостность представления информации. Сотни лет педагогика развивалась главным образом за счет анализа — расчленения целого на части; синтезом как таковым практически пренебрегали. Моделирование основывается на синтетическом подходе: вычленяет целостные системы и исследует их функционирование.
Подавляющее большинство созданных ныне педагогических моделей относится к дидактическим явлениям. Воспитательные процессы, на которые прежде всего надо направить гносеологический луч моделирования, исследуются на моделях явно недостаточно. Причиной тому невероятная сложность воспитания, сотни факторов, влияющих на его результаты, а также вполне объяснимый страх перед формализацией, грозящей вылиться в «безлюдную» математизированную теорию, приложить которую к реальной практике будет невозможно.
Моделирование в дидактике успещно применяется для решения следующих важных задач:
оптимизации структуры учебного материала;
улучшения планирования учебного процесса;
управления познавательной деятельностью;
управления учебно-воспитательным процессом;
диагностики, прогнозирования, проектирования обучения. Моделирование, несомненно, метод плодотворный, но и
коварный. По существу он служит трем полезным целям. Эвристической — для классификации, обозначения, нахождения новых законов, построения новых теорий и интерпретации полученных данных. Вычислительной — для решения вычислительных проблем с помощью моделей. Экспериментальной — для решения проблемы эмпирической проверки (верификации) гипотезы с помощью оперирования с теми или иными моделями. Коварство же моделирования в том, что, несмотря на всю его привлекательность, а также возможность охватить систему в целом, приходится прибегать к условным схемам, вводить очень много допущений. В результате появляются модели, не имеющие ничего общего с моделируемой действительностью, искажающие ее. Исследовать их — пустая трата времени и сил: нужно сперва доказать справедливость модели.
Математизация педагогики несет в себе огромный гносеологический потенциал. Она не только избавляет науку от одностороннего качественного описания, но и устраивает строгую ревизию достигнутому, предоставляя для этого объективные методы проверки и более совершенный язык. Для полного успеха формализации должны быть непременно соблюдены важные условия: ясная непротиворечивая гипотеза, основанная на доказанных наукой положениях; следующая за ней модель, включающая необходимое число переменных; «проигрывание» Этой модели, а затем заполнение ее экспериментальными фактами, отшлифованными объективной мерой. Эта последовательность и составляет логическую цепочку диалектических переходов от явления к его математическому описанию.
Для построения формализованных педагогических теорий сегодня используются новейшие разделы математики: матричный и факторный анализ, теория игр, массового обслуживания, управления сложными системами, динамического программирования, микроанализ. Приведем пример новой математической теории, с которой еще мало знакомы педагоги, но перед которой, судя по всему, большое будущее именно в педагогике.
Как известно, в нашей науке нет категорических утверждений типа «да» — «нет», нет ярко выраженного «черного» и «белого». Вся ее действительность — тысячи полутонов всех оттенков, характеристики, расположенные между не всегда четким минимумом и максимумом. Для описания этой реальности требуется особая математика, такая, где бы фигурировали не грубые дискретные переходы, а плавные изменения: «меньше», «чуть меньше», которые тем не менее можно было бы описать на строгом языке, чтобы ЭВМ могла оперировать ими как изменяющимися величинами.
Теория размытых (нечетких) множеств разработана около тридцати лет назад американским ученым Л.Заде. На ее языке удается описать довольно аморфные представления, которых так много в педагогике. Например, утверждение «молодой» на языке теории нечетких множеств будет записано так: молодой = 0,1/15 + 0,9/20 + 1,0/25 + 0,7/30 + + 0,2/40 + 0,1/50. Числа 15, 20, 30, 50 означают возраст. Молодому может быть и 15, и 20, и даже 50. Каждому возрасту «привешены» меры близости. Для 15 лет мера невелика — всего 0,1, так же как и для 50. Зато для 25 лет максимальна — 1,0. Можно пойти дальше — вычислить утверждение «очень молодой». Оно будет выглядеть так: очень молодой = молодой^ (молодой в квадрате). «Не очень молодой и не очень старый» = V (молодой)^ QV (старый)^. Дряхлый — очень старый = (старый)"*.
Алгебра Л. Заде имеет свои правила, с помощью которых происходит объединение и разъединение множеств, концентрация и разложение элементов, уменьшение или увеличение нечеткости. На ее языке удается количественно описывать различные педагогические утверждения.
БС
Xi. Какой шкалой является пятибалльная шкала школьных оценок?
1) Номинальной;
2) ранговой;
3)интервальной;
4) шкалой отношений.
ХП. Какие методы научного исследования нужно применить для проверки эффективности компьютерного изучения темы «Правописание безударных гласных»?
Метод срезов.
Беседу.
Лабораторный метод.
Факторный анализ.
Исторический метод.
Наблюдение.
Статистический метод.
Изучение школьной документации.
Метод размытых множеств.
Изучение результатов ученического творчества.
Исследование операций.
Изучение первоисточников.
Моделирование.
Анализ опыта.
Естественный эксперимент.
Достарыңызбен бөлісу: |