Байланысты: 598d605b-380b-11e3-9dea-f6d299da70eeықтималдық теориясы
§3. Ықтималдылықтың классикалық анықтамасы Өткен параграфта біз оқиға түрлерін келтірдік, енді оқиғаның пайда болу мүмкіндігінің сандық өлшеуішін көрсетеміз. Жалпы айтқанда, А оқиғасының пайда болу мүмкіндігінің сандық мөлшері үшін р(А) функциясының мәні алынады. Мұны осы А оқиғасының ықтималдылығы деп атайды. Осы қалпында р(А)-ның ешқандай мәні жоқ. Ал ықтималдылық ұғымы да, кездейсоқ оқиғалар сияқты, ықтималдылықтар теориясының негізгі ұғымдарының бірі. Сондықтан ықтималдылық ұғымын осы кездейсоқ оқиғамен байланыстыра қарастырып, ықтималдылықтың нақты сандық мөлшерін көрсетеміз.
Қандай болмасын математикалық теория белгілі бір ұғымдар негізінде құрылатын болғандықтан, біз ықтималдылықтар теориясының құрылуын ықтималдылықтың классикалық анықтамасына негіздеиміз. Ілгеріде ықтималдылықтар теориясын бұдан да басқа анықтама негізінде құруға болатынын көреміз.
Ықтималдылықтың классикалық анықтамасын алғаш рет берген Лаплас еді. Ықтималдылықтың бұл анықтамасы өте қарапайым, оны түсіну үшін жоғары математиканы білу қажет емес. Сондықтан да біз ықтималдық теориясын баяндауды осы анықтамадан бастаймыз.
Ықтималдылықтың классикалық анықтамасы оқиғалардың тең мүмкіндігіне (тең ықтималдылығына) сүйенеді. Тең мүмкіндік немесе тең ықтималдық ұғымдары алғашқы ұғымдарға жатады, олар логикалық (формальды) анықтама беруді қажет етпейді. Жалпы сынау нәтижесінде бірнеше оқиғалар пайда болуы мүмкін болса және олардың біреуінің пайда болу мүмкіндігінің, екіншісіне қарағанда, артықшылығы бар деп айта алмайтын болсақ, яғни сынаулар нәтижесінің симметриялы қасиеті болса, мұндай оқиғалар тең мүмкіндікті делінеді. Бұған 1-параграфта келтірілген 2-мысал айғақ. Өйткені кубтың әрбір жағының пайда болу мүмкіндігі бірдей.Сондықтан бұлар тең мүмкіндікті (яғни тең ықтималдылықты) оқиғалар болады.
Бірнеше оқиғалар тең мүмкіндікті қос-қостан үйлесімсіз және оқиғалардың толық тобын (системасын) құраса, онда ол оқиғаларды сынаудың мүмкін (мүмкін болатын) нәтижелерінің толық тобы деп атайды. Бұл терминнің орнына тең мүмкіндікті барлық жағдайлар немесе жалпы жағдайлар саны не, қысқаша, жағдайлар деп атайды. Ал тең мүмкіндікті үйлесімсіз және оқиғалардың толық тобын құрайтын оқиғалардың (жағдайдың) бірнешеуі бір А оқиғасының пайда болуын тудыруы мүмкін, яғни екінші сөзбен айтқанда, А оқиғасы тең мүмкіндікті бірнеше оқиғаларға бөлінеді және олардың кез келген біреуінің пайда болуынан А оқиғасының пайда болуы шығатын болады. Мысалы, кубты бір рет лақтырғанда оның кез келген тақ нөмірі А1 ,А3 ,А5 пайда болуынан, А оқиғасының пайда болуын байқаймыз. Былайша айтқанда, А оқиғасы тақ нөмірлі А1 ,А3 ,А5 үш оқиғаға (жағдайға) бөлініп отыр. Бұл тақ нөмірлі оқиғалар саны (ол 3-ке тең) осы А оқиғасына қолайлы жағдайлар болып табылады. Сонымен, сынау нәтижесінде А оқиғасы бөлінетін мүмкін мәндерді осы оқиғаға (А-ға) қолайлы жағдайлар деп атайды.
1-мысал. Жәшікте 10 шар бар. Олардың 4-еуі ақ, 6-уы қызыл шар. Жәшіктегі шарларды араластырып жіберіп, қарамай тұрып бір шарды алайық. Алынған шар ақ шар болып шығуының (А оқиғасы) сандық мөлшерін (ықтималдығын) анықтау керек.
Шешуі. Әрбір шардың пайда болу мүмкіндігі бірдей (яғни бұлар тең мүмкіндікті оқиғалар) және оның шығу мүмкіндігінің сандық мөлшері (ықтималдығы) 1/10-ге тең А оқиғасы үшін барлық мүмкіндікті 10 жағдайдың тек 4-уі ғана қолайлы.А оқиғасы қолайлы жағдайлар санын (олар 4) барлық жағдайлар санына (олар 10)қатынасы,осы оқиғаның пайда болуының мүмкіндік дарежесін белгілейтін қандай да бір сан ƿ(А) болмақ,бұны ƿ(А)=4/10 ықтималдық мәні деп қабылдаймыз.
Анықтама.А оқиғасына қолайлы жағдайлар санының (m) сынаудың тең мүмкіндікті барлық жағдайлар санына (n) қатынасын А оқиғасының ықтималдығы деп атайды және былай жазады:
Р(А)=m/n Ықтималдықтың бұл анықтамасын классикалық анықтама дейміз. Бұдан төмендегі салдарлар шығады.
Ақиқат оқиға ықтималдығы бірге тең. Шынында, оқиға ақиқат болу үшін А оқиғасына қолайлы жағдайлар саны m сынаудағы барлық тең мүмкіндікті жағдайлар саны n-ге тең, яғни m=n болады. Онда (1) бойынша
Р(U)=m/n=1
Мүмкін емес оқиға ықтималдығы нольге тең. Шынында да, егер оқиға мүмкін емес болса, онда А оқиғасына қолайлы жағдайлар саны mнольге тең болады. Олай болса, ықтималдықтың анықтамасынан
Р(V)=0/n=0
А оқиғасының ықтималдығы р(А( ноль мен бір аралығындағы оң таңбалы сан. Шынында, А оқиғасына қолайлы жағдайлар саны m нольден n-ге дейінгі өздерін қоса алғандағы, мәндерді қабылдайды, яғни
0<Бұл теңсіздіктің екі жақ бөлігін де n санына бөлсек, шығады
0≤ m/n≤1
Немесе
0 ≤ р(А) ≤ 1
Енді ықтималдықтың классикалық анықтамасын пайдалана отырып, ықтималдықтың тікелей есептеуге бірнеше мысалдар келтірейік.
Ықтималдықтың тікелей есептеу екі тәсілмен орындалады. Бірнеше тәсіл бойынша есептің берілген шартына ықтималдық тікелей есептелінеді, екінші жағдайда комбинаторика формулалары пайдаланылады. Біз осы екі жағдай үшін есептерді жеке-жеке шығарайық. Алдымен бірінші жағдай үшін бірнеше мысалдар мен жаттығулар келтіреміз. Есептерді екінші тәсілмен шығару үшін комбинаторика элементтерімен танысып өтеміз.