Жасушаны зерттеу әдістері



Дата07.02.2022
өлшемі25,53 Kb.
#85608
Байланысты:
2лекци цитология


. ЖАСУШАНЫ ЗЕРТТЕУ ӘДІСТЕРІ
Қазіргі кезде цитологияның зерттеу тәсілдері мен әдістері әр алуан. Цитологиялық әдістерді оптикалық, цитофизикалық, ультрақүрылымды зерттеу, цитохимиялық, гистохимиялық және т.б. әдістерге топтастыруға болады. Жасуша органоидта-рының қүрылысы, ультрақүрылымы мен қызметі жарық және әлектронды, қараңғы өрісті, фазалы-контрасты, поляризациялы, люминесцентті микроскопия және тағы басқа әдістер арқылы зерттеледі.
Жарық және әлектронды, қараңғы өрісті, фазалы-контрас­ты, поляризациялы, люминесцентті микроскопия әдістері фик-сацияланған жасушалардың қүрылысы мен ультрақүрылымын зерттеуге қолданылатын болса, дифференциалды центрифуга-лаудың көмегімен алынған жеке органоидтар цитохимиялық, биохимиялық, биофизикалық және т.б. әдістермен зерттеледі.
Цитологияда негізгі қолданылатын әдістердің бірі - жарьщ микроскопы тәсілі. Жарық микроскопия әдістерінде объект арқылы жарық шоғы өтіп, объектив линзалар жүйесіне тү-сіп, алғашқы сурет пайда болады да, окуляр линзаларының көмегімен үлғаяды.
Оптикалық жүйе ретінде микроскоптың басты сипаты - шешушілік қасиеті, яғни бір-біріне жақын орналасқан екі объектіні жеке-жеке корсету. Микроскоптың шешуші қабілеті жарық толқынның үзындығымен есептеледі: толқынның ұзындығы неғүрлым қысқа болса, соғүрлым шешуші қабілеті жоғары. Жарық микроскопта көбінесе спектрдің көру облы-сындағы жарық көзі (400-700 нм) қолданылады, сондықтан бүл жағдайда микроскоптың максималь шешуші қабілеті 200-350 нм-ден жоғарыламайды (0,2-0,35 мкм). Яғни жарық микроскопының шешуші қабілетінің соңғы деңгейі жарықты көру аймағын пайдаланғанда 0,2-0,3 мкм тең.
Қараңгы өрісті микроскопия. Қараңғы өрісте препараттарды арнайы конденсордың көмегімен қарастырады. Қараңғы өрісте бақылау кезінде объектіге жарық шоғының сәулелері түспейді, оның орнына шоктың шеттік сәулелері қолданысын табады.
Шеттік сәулелер объективке түспейді, сондықтан микроскоптың көру аумағы қараңғы болады да, шашыраңқы жарықпен көрін-ген объект ашык түсті болып көрінеді. Жасуша препараттарын-да түрлі оптикалық тығыздықтағы қүрылымдар болады. Жалпы қараңғы өрісте бүл қүрылымдар түрлі жарықтандырулардыц көмегімен анық көрінеді. Жарықтандыру кезінде жасушада жарық сәулелеріндегі тозаңға үқсас (Тиндаль әффектісі), өте үсақ, кішкентай бөлшектер (0,2 мкм-нен кем) жарқырайды, шағылысқан жарык сәулесі микроскоп объективіне түседі.
Бүл әдіс тірі жасушаларды зерттеуде жиі қолданылады.
Фазалы-контрасты (фазасы царама-царсы) микроскопия әдісі. Жасушаның кейбір бөліктері жүқа болғанымен, бір-бірінен тығыздыктары мен жарықсындырғыштықтарымен ерекшеле-неді, жасушалардың осындай қасиетіне фазасы қарама-ңарсы микроскопия әдісі негізделген. Фазалы-контрастық микроскоп-тың объективіне арнайы пластинка қондырылған, сол пластинка арқылы жарық сәулесі тербеліс фазасының қосымша жылжуын сезеді. Суретті қалыптастыру кезінде бір фазада немесе қарама-қарсы фазада болатын, бірақ әр түрлі амплитудалы сәулелер өзара қарым-қатынасқа түседі, соның салдарынан объектінің ашық қою түсті контрасты суреті пайда болады. Фазалы контрасты микроскоптың ерекшелігі - тірі жасушаларды, боял-маған объектілерді зерттеуге мүмкіндік береді.
Интерференциялы микроскопия әдісі жарықтың екі поляр-ланған сәулелерінің бірі объект арқылы, енді біреуі объектінің қасынан өтуіне негізделген. Бүл жағдайда бірінші сәуленің фазасының кешігуі туындайды. Осы сәулелердің қабаттасуы (интерференциясы) суреттің пайда болуын туғызады. Егер екі полярланған сәулелердің екі толқынының аралығындағы арақашықтық толқын үзындығының толык санына тең болса, сурет ақшыл өрісте кара түсті дақ ретінде көрінеді, ал егер де екі толқын арасындағы арақашықтық жартылай толқындардың тақ санына тең болса, сурет қараңғы өрісте ақшыл дақ ретінде суреттеледі.
Интерференциялы микроскопта сәулені екі перпендикуляр жазықтықта поляризациялау конденсордыц фокальды жазық­тығында орналасқан поляризатор мен кварцтан жасалған Волластон призмасының көмегімен жүреді. Волластонның екінші призмасы осы екі сәулені объективтің артқы фокальды жазықтығында жинақтайды.
Интерференциялы микроскоп көмегімен тірі объектілерді бақылауға болады, сондай-ақ жасуша қүрылымдарының кұрғақ салмағы, жасушадағы қүрғақ затпен судың концентрациясы, құрылымдардың қалыңдығы туралы мәліметтер алуға болады. Мүндай мәліметтер алу үшін микроскоптың тубусының жоғар-ғы жағында орналасқан компенсатор қолданылады.
Рентген сәулелерін сіңіру тәсілі. Әр түрлі заттар тол-қындардың белгілі бір ұзындықтарында рентген сәулелерін әрқалай сіңіреді, міне осы қасиетке рентген сәулелерін сіңіру әдісі негізделген. Спектрорентгенограмма көптеген заттар үшін белгілі. Рентген сәулелерін үлпадан жасалған препарат арқылы өткізе отырып, сіңіру спектрі көмегімен оның химиялық құра-мын анықтауға болады. Осы әдістің көмегімен микрофотогра-фиялардан жасушадағы қүрғақ заттардың қүрамы анықталады. Фотосуретке түсіретін қүрылымда заттың концентрациясы неғүрлым көп болса, соғүрлым әмульсия аз жарқырайды. Сіңі-рілуші заттың концентрациясы сол заты бар қүрылымның су-ретінің қараюымен анықталады. Оптикалық тығыздык форму-ланың көмегімен есептелінеді.
Флуоресценциялыц микроскопия. Тірі жасушаларды зерттеу-ге флуоресценциялы бояғыш заттар және флуоресценциялык микроскопия әдісі кеңінен қолданылады. Бүл әдістің негізінде кейбір заттардың ультракүлгін сәулелерінде флуоресценцияла-ну қасиеті жатыр. Мүндай флуоресценцияны үлпадан шығаруға болады, ол үшін үлпа арқылы ультракүлгін сәулелерінің шоғын өткізу керек. Бүл мақсатта конденсорда жалпы жарық шоғынан көк және ультракүлгін сәулелерді бөлетін жарық фильтрі орналасқан арнайы ультракүлгінді микроскоп қолданылады. Бақылаушының көзінің алдында орналасқан басқа жарық фильтрі препарат шығаратын флуоресценция сәулелерін өткізе отырып, кок және ультракүлгін сәулелерді сіңіреді. Жарық көзі ретінде күшті ультракүлгін сәулесін бөлетін сынап шамдары және қыздыру шамдары қолданылады.
Жарық әнергиясын сіңіру кезінде бірқатар заттарға жарқы-рау (флуоресценттік, люминесценттік) қасиеті тән. Флуоресцен­ция спектрі флуоресценцияны қоздыратын сәулелерге қатысты үлкен толқындар жағына қарай ығысады. Бұл принцип қысқа толқындардың аймағында флуоресценциялаушы объектілері анықталып, қарауды қамтамасыз етеді. Мүндай микроскоптар-дың көкшіл-күлгін аймағында жарық беретін фильтрлер пайда-ланылады.
Цитологиялық зерттеулерде ультракүлгін люминесцентті микроскоптар да пайдаланылады. Бүл әдісте тірі жасушаларға флуоресценттеуші заттарды енгізеді. Ол заттар жасушаның бел-гілі бір күрылымдарымен байланысқа түсіп, олардың қайта лю-минесценциялануын туғызады.
Ультракүлгін микроскоптарында жеке флуоресценциялы объек-тілерді бақылауға болады.
Радиоавтография әдісі жасушадағы зат алмасу үдерісін зерттеуде қолданылады. Ол үшін фосфор, көміртегі, сутегі ра-диоактивті әлементтер немесе олардың қосындылары пайдала­нылады. Зерттеліп отырған ортаға немесе ағзаға метаболизм үдерісі кезінде, жасушалармен сіңірілетін радиоактивті изотоп енгізіледі. Изотоптардың радиоактивті сәулеленуі салдарынан олардың орныққан жерін анықтауға болады. Бүл әдісті қолдану кезінде жасушалардың жүқа кесінділерін үлбірге салады. Ра-диоактивті изотоптар бар жерлерде үлбір қараяды.
Изотопты енгізгеннен кейін біраз уақыт өткеннен соң, яғни метаболизмнің белгілі бір кезеңдері өткеннен кейін препарат даярланады. Заттардың таралуы нақты анықталады. Заттардың тек қана жасушада емес, сондай-ақ жасуша мембраналарына орналасуларын анықтауда бұл әдістің мәні зор.
Поляризациялық микроскоптың көмегімен изотропты объектілерді (бөліну үршығының талшыктарын, микрофибрилдерді және т.б.) зерттейді.
Мүндай микроскоптың конденсорынын алдында поляри­затор орналастырылады, ол белгілі полярлану жылдамдығы бар жарық толқындарын өткізеді. Препарат пен объективтен кейін полярланудың сол жазықтығымен жарық өткізе алатын анализатор орналастырылады. Қиыскан призмалар ортасында сәулені екі есе сындыратын объекті орналасқаннан кейін, объект қараңғы аумақта жарқырап көрінеді. Поляризаторлық микроскоп көмегімен өсімдік жасушасының қабықшасында мицеллийлердің орналасуын қарастыруға болады.
Рентген сәулелерін дифракциялау әдісі. Рентген сәулелері кристалдар арқылы өткен кезде дифракцияға ұшырайды. Олар-дың осы қасиеті рентген сәулелерін дифракциялау әдісінің негі-зін қалайды. Егер кристалдардың орнына биологиялық объекті-лер, мысалы, сіңір, целлюлоза немесе тағы басқа объектілерді қолданған кезде, олар тура сондай дифракцияға үшырайды. Бұл жағдайда әкранда немесе фотоүлбірде дактар мен жолақтардан түзілген сақиналар қатары пайда болады.
Дифракция бүрышы объектідегі молекулалар мен атомдар топтарының арақашықтығымен анықталады. Қүрылымдық бір-ліктер арасындағы қашықтық неғұрлым алшақ болса, дифрак­ция бұрышы согүрлым аз болады, немесе, керісінше, зерттеліп отырған заттың атомдары мен молекулаларының арасындағы арақашықтық аз болса, дифракция бұрышы үлкен болады. Ал әкранда бүл қара түсті зоналар мен орталыктар арақашық-тықтарына сәйкес келеді.
Бүл әдістің атомдар мен молекулалардың топтарының кеңіс-тікте таралуын анықтауда және заттың ішкі қүрылымы туралы мәлімет алуда мәні зор.
Әлектронды микроскопия әдісі. Әлектронды микроскоптың құрылысы жарық микроскоп тәрізді, бірақ жарық шоғының ролін әлектронды шоқ атқарады, бүл шоқ линзалармен емес, әлектромагниттермен фокусталады. Дегенмен, әлектрондар шо-ғы үшін толқындар үзындығы көзге көрінетін жарық толқындар ұзындығына қараганда неғұрлым қысқа, осы қасиеті әлектронды микроскоптың шешуші қабілеттілігін арттырады. Қазіргі әлек­тронды микроскоптардың шешуші қабілеті - 0,2-1 нм.
Әлектронды микроскоптың астында тірі емес объектілер, яғни препараттар қарастырылады, Объектілер тірі ағзалардың өлуін тудыратын вакуумға салынады. Вакуумда әлектрондар ша-шырамай, объектіге бірден түседі.
Әлектронды микроскоптан қарастырылатын объектілердің жүқалығы 400-500 А-нен қалың болмауы тиіс. Сондыктан жүқа препараттарды даярлау үшін ультрамикротом колданылады.
Вирустар, фагтер, нуклеин қышқылдары, жүқа мембраналар сияқты биологиялық объектілердің әлектрондарды шашырата-тын қасиеттері бар. Олардың контрастылығын ауыр металдармен - алтын, платина, хроммен жалату арқылы күшейтеді.
Контрастылықты (қарама-қарсылықты) осмий немесе воль­фрам қышқылдарының және ауыр металдардың кейбір түз-дарымен күшейтеді, олар препараттың кейбір жеке бөліктерімен қосылыстар түзе алады. Аталған заттар препаратқа фиксациялау немесе бояу кезінде енгізіледі.
Аталмыш әдіс құрылымдарды субмикроскопия (макромоле­кул ал ар) деңгейінде зерттеуді қамтамасыз етеді.
Трансмиссионды әлектронды микроскопта әлектрондар жа-рық микроскопындағы объект арқылы өтетін жарық секілді өтеді. Нәтижесінде, әлектрондар шоғы фотография тақтасында объектінің суретін көрсетеді. Әлектрондар жақсы өту үшін объект кесінділері өте жұқа болуы тиіс.
Сканерлеуші микроскопта әлектрондар объектінің бетімен шағылысады да, кері бағытта қозғалу кезінде суретті береді. Сканерлеуші микроскоптың шешуші қабілеті трансмиссион­ды әлектронды микроскопқа қарағанда томен. Сканерлеуші микроскоптың көмегімен қабығы қатты кейбір ағзаларды тірі күйінде зерттеп, кейбір тіршілік иелерінің жабынының үсақ де-тальдарын көрсететін тамаша фотосуреттер алуға болады.
Ақыргы бейненің нақтылыгын күшейту үшін барлық объек-тілерді бояйды. Жарық микроскопында бояғыш заттарды, ал трансмиссионды әлектронды микроскопында қүрамында әлек­трондарды сіңіруге қабілетті ауыр металдары бар фиксаторлар (мысалы, осмийдің торт тотыгы, калий перманганат, қорғасын) қолданады. Сканерлеуші әлектрондық микроскоп үшін мүзбен жабылған бет алуға материалды жиі тоңазытады. Бүл жағдайда суда еритін заттардың суды жоғалтулары тоқтайды, сонымен қатар қүрылымдардың химиялық қүрамының өзгерулері азаяды. Әлектрондық микроскоптың көмегімен фиксациялайтын заттардың әсерінен цитоплазманың қозғалғыштығын тоқтату сәтінде жасушаның статикалық күйі зерттеледі.
Жануарлар жасушалары мен үлпаларын зерттеу үшін жа­суша өсінділері (культуралары) әдісі пайдаланылады. Кейбір үлпаларды жеке-жеке жасушаларға бөлгеннен кейін, жекеленген жасушалар өз тіршіліктерін жалғастырады, тіпті көбею қасиетін жоғалтпайды. Әмбрион немесе кейбір жеке жасушалар қолайлы ортада ағзадан тыс өсіп, көбейе алатындығын алғаш рет амери-кан әмбриологы Р. Гаррисон (1879-1959) дәлелдеген. Жасушаны культуралау техникасын әрі қарай дамытқан француз биологы А. Каррель (1873-1959) болды.
Бүл әдістің ең қарапайым тәсілі келесідей: қоректік ортаға толы камераға тірі үлпаның үзігі салынады. Біраз уақыт өткеннен кейін ұлпа үзігінің шетіндегі жасушалар бөлініп өсе бастайды. Өзге жағдайда үлпаның кесілген кішкентай бөлігі трипсин ферменті немесе хелатон версен ферменті ерітінділерімен сәл өңделеді, бұл жасушалардың толық бытырап кетуіне әкеп соғады. Содан соң жасушаларды шайып, қоректік ортаға салады, онда жасушалар түнбаға түседі де, шыныға жабысып көбейе бастайды, алдымен олар колониялар түзеді, соңынан жасушалық қабат түзеді. Осылай тірі кезінде бақылауға ың-ғайлы, бір қабатты жасушалар өсіндісі алынады. Өсінді өсіру кезінде қоректік ортадан баска температура, стерильділік сияқты факторлар ескерілген жөн. Культурада өсімдік жасушаларын өсіруге болады. Қазіргі кезде ағзадан тыс жасушаларды өсіру тек қана цитологиялық зерттеулерде қолданылмай, сондай-ақ генетикалык, вирусологиялық, биохимиялық зерттеулерде де қолданылады.
Тірі жасушаларды бақылау көбінесе фотосуреттерге тусі-ру арқылы тіркеледі. Бүл әдісте микроскопқа түрлі фотоқон-дырғылар қондырылады. Тірі жасушаны кинопленкаға да түсіруге болады. Ол үшін жылдамдатылған немесе баяулатыл-ған кинотүсіру (цейтраферлік түсіру) жүргізіледі. Бүл жағдайда жасушалардың бөлінуі, фагоцитоз, цитоплазманың қозғалысы, кірпікшелердің жылжуы сияқты маңызды үдерістерді бақылауға болады.
Дегенмен жасушаның қүрылымы мен кызметі туралы мәліметтер фиксацияланған жасушалардан көбірек алынады. Фиксащтның мәні - жасушаларды өлтіру, жасушаішіндік ферменттердің белсенділігін тоқтату, жасуша компоненттерінің ыдырауын токтату, сондай-ак, кұрылымдар мен заттарды жо-ғалтпау, тірі жасушаларға тән емес қүрылымдардың пайда бо-луына жол бермеу. Фиксаторлар ретінде альдегидтер, олардың басқа заттармен қосындысы, спирттер, сулема, осмийдің төрт тотығы қолданылады. Фиксацияланған объектілер соңынан боялады. Бояу үшін түрлі табиғи (гематоксилин және кармин, т.б.) және синтетикалық бояулар колданылады. Мүше жасуша­ларын бояу үшін кесінділер жасалуы қажет. 5-10 мкм-ге дейінгі кесінділер микротомда дайындалады.
Цитологияда түрлі биохимияның аналитикалык және препа-ративті тәсілдері пайдаланылады.
Микрохирургия әдісінде микроманипулятордың көмегімен жасушаның жеке бөлімдерін алып тастауға, жаңа бөлімдер қосуға немесе қандай да болсын өзгеріс енгізуге болады. Амебаның ірі жасушасының негізгі үш компоненті - жасуша мембранасы, цитоплазма және ядро бөліп алып, соңынан қайта жинап тірі жасуша алуға болады. Осындай жолмен амебаның бірнеше дарағынан жиналған қүрамды жасуша алуға болады.

Достарыңызбен бөлісу:




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет