4.4. Схемы с умножением напряжения
Выпрямители с емкостным фильтром позволяют реализовать схемы с умножением напряжения, в результате чего можно получать удвоенное, утроенное и т.д. напряжение по сравнению с напряжением однополупериодного выпрямителя.
Принцип работы схем с умножением напряжения основан на использовании нескольких конденсаторов, каждый из которых заряжается от одной и той же обмотки трансформатора через соответствующий диод. По отношению к нагрузке конденсаторы оказываются включенными последовательно, и их напряжения суммируются. Схемы умножения можно использовать и с прямым включением в сеть переменного тока. Различают симметричные и несимметричные схемы умножения напряжения.
Симметричная схема удвоения напряжения (рис. 4.4, а) состоит из двух однополупериодных выпрямителей. Конденсатор С1 заряжается через диод VD1 во время первой полуволны ЭДС е2, а конденсатор С2 - через диод VD2 во время второй полуволны ЭДС е2. При равенстве емкостей конденсаторов С1 и С2 напряжение на нагрузке при холостом ходе равно удвоенному значению напряжения на конденсаторе. В реальных условиях (под нагрузкой) в связи с тем, что заряд одного конденсатора сопровождается одновременным разрядом другого через сопротивление нагрузки, это напряжение становится меньше.
Пульсации выпрямленного напряжения (рис. 4.4, б) имеют удвоенную частоту по отношению к частоте питающего напряжения. При холостом ходе среднее значение выпрямленного напряжения
. (4.9)
Рассчитывать такой выпрямитель можно по упрощенной методике, рассмотренной выше. В этом случае расчетное напряжение необходимо брать вдвое меньше напряжения на нагрузке, величины функций B(), D(), F() определять при mп=1, а величину функции H() - при mп =2.
Рис. 4.4. Симметричная схема удвоения напряжения (а) и временные диаграммы токов и напряжений (б)
Максимальное значение обратного напряжения на диоде в симметричной схеме удвоения напряжения равно среднему значению выпрямленного напряжения.
В несимметричной схеме удвоения (рис. 4.5, а) два однополупериодных выпрямителя питаются от разных по величине напряжений.
В первый полупериод заряжается конденсатор С1 через диод VD1 под действием ЭДС е2, во второй полупериод – конденсатор С2 через диод VD2 под действием суммы ЭДС е2 и uC1, совпадающий по направлению. В результате напряжение на конденсаторе С2 при холостом ходе оказывается в два раза выше, чем на конденсаторе С1. Обратные напряжения на диодах при холостом ходе достигают удвоенной амплитуды ЭДС вторичной обмотки трансформатора. Частота пульсаций выпрямленного напряжения равна частоте напряжения в питающей сети. Так как один из выводов обмотки трансформатора соединен с отрицательным полюсом нагрузки, то его можно заземлить, что является положительным свойством схемы.
Дальнейшим развитием несимметричной схемы удвоения напряжения является схема умножения напряжения (рис. 4.5, б), в которой добавлены цепочки из диодов и конденсаторов VD3-C3, VD4-C4 и т.д. Здесь на конденсаторе С1 при холостом ходе напряжение равно Е2m, а на всех последующих конденсаторах 2Е2m. Данная схема умножает напряжение источника в несколько раз.
Рис. 4.5. Несимметричные схемы умножения напряжения:
а удвоитель напряжения; б умножитель напряжения
Достарыңызбен бөлісу: |