Лопиталь ережесі.
Функция графигінің жанамасын табу. у=ƒ(х) функция х0 нүктеде анықталған, және туындысы ƒ‛(х0)бар болса, онда графиктің (х0; ƒ(х0)) нүктесіне сызылған жанама теңдеуі
у= ƒ‛(х0) (х-х0)+ ƒ(х0) көріністе болады
Мысал: у=х2+2параболаның х=1 нүктесі арқылы өтетін жанама теңдеуін табу керек.
Шешуі: х0=1, ƒ(х0)=ƒ(1)=у(1)=12+2=3
у‛= ƒ‛(х)=(х2+2)‛=2х;ƒ‛(1)= 2•1=2
у=2(х-1)+3=2х-2+3=2х+1 Жауабы: у=2х+1
2. Жылдамдық туралы есеп=() болса,
Материалдық нүкте S=S(t) заңмен түзу бойынша қозғалғанда, оның жылдамдығы =’S(t) (белгілі бір t0 моменттегі жылдамдық), үдеуі а=‛(t) =S’’(t) теңдеулері арқылы есептеледі.
Мысал: S=3t2+4t-1(м) заңмен қозғалған материалдық нүктенің t=2сек моменттегі жылдамдығын анықтау керек.