Лекция: 15 с Лабораториялық сабақтар 15с СӨЖ: 30с обсөЖ : 30с


Нуклеин қышқылдарының мутациялық өзгергіштігі



бет12/16
Дата29.03.2017
өлшемі4,19 Mb.
#12681
түріЛекция
1   ...   8   9   10   11   12   13   14   15   16

Нуклеин қышқылдарының мутациялық өзгергіштігі


Жоспары:

1.Нуклеин қышқылдарының мутациялық өзгергіштігі.

2. Спонтанды және индукцияланған мутациялар.

3.Мутагендер және олардың әсер ету механизмдері.

4.Гендік мутациалар. Ген мутаторлар.

5.Белоктардың гендік инженериясы және бағытталған мутагенез.



Лекция мәтіні:
Мутациялық өзгергіштік көп өзгергіштіктің бір түрі ғана болып табылады. Тірі организмдердің маңызды қасиеттерінің ең елеулісінің бірі ұрпақтан ұрпаққа таралатын өзгергіштіктің (мутацияның) пайда болуы. Мутация со-нымен қатар коптеген апаттың себебі болып табылады: ор түрлі аурулардың қоздырғыштарыныц эпидемиясы, қатерлі ісіктер, түқым қуатын аурулардың пайда болуы т. б. Сонымен қатар мутация өсімдіктер, жануарлар және микроорганизмдер селекциясында қолданылатын көптеген пайдалы өзгерістер де бсреді.

"Мутация" деген атауды, Мендель зандарын қайта ашушылардың бірі голландиялык ботаник Гуго де Фриз (1848-1935) кснеттен пайда болған тұкым қуатын өзгерістерді сипаттау ушін қолданды. Нсгізінде бұл сөздің шығу тегі әріректе жатыр. Көне Рим империясында Август патшаньщ билік ету заіманында (біздің жыл санауымызға дейінгі 63-64 ж.) сауда орталықтары мен калалардың ара-сындағы байланысты үйымдастыру үшін жаяу және атты шабармандар, ал жүк үшін пар атты көлік колданылған. Жол бойында қалалар мен елді пункттерде (бекеттерде) жолаушыларға арналған демалатын "маысио" деп аталатын сарайлар болған. Бүл мансиолардың ерекше аттары болма-ғандықтан олардың орналасқан нүктелері мен бағыттары ғана көрсетілген ("мансио позито ин"). Осыдан барлық европалық тілдерде "почта" деген сөз шыққан. Осы мансиолардың араларында "мутацио" деп аталатын шаршаған аттарды ауыстыратын бекеттер болған. Мінс "мутацио" деген сөздің шығу тегі осындай (ауыстыру, өзгерту).



Мутагенез (лат. "мутацио" -өзгеру, грек. "генезис" -тегі) -әртүрлі физикалық жәнс химиялық факторлардың әсеріиен организмде түкым қуатын өзгерістің (мутацияның) пайда болу процесі. Мутация - клеткадағы геннің табиғи не жасанды жолмен өзгеруі. Тірі табиғаттағы вирустар, микроорганизмдерден бастап жогарғы сатыдағы өсімдік, жануар, адам — барлығы да мутацияға ұшырайды. Жыныс клеткалары мен спораларда пайда болған (генеративтік) мутациялар тұқым қуады. Дене клеткаларында болатын (сома-

лық) мутациялар тұкым қумайды. Дене клеткаларығща мутантты ткані бар өкілдерді мозаиктер немссе химерлер деп атайды .Вегетативтік жолмен (бір түйнегінен) көбейстін организмгс сомалық мутацияның үлкен маңызы бар.

Организмнің табиғи не ор түрлі факторлар әсерінен түкым қуатыи өзғеріске бейімділігі мутабильдік дсп аталады. Мутацияға бейім болу көптеген себсптсрге -организмнің жас мелшеріне, даму сатысына, температурага, генотиптің ерекшеліғіне байланысты. Гендердің мутацияға бейімділігі бірдей болмайды, оларды стабильді жонс мута-бильды деп бөледі. Жеке гомолоғты хромосомаларда орна-ласқан аллель жүптары бір мезгілде үшырамайды. Генотиптегі гендер мутацияға жиі үшырайды. Жеміс шыбынының бір үрпағында 100 гаметаға бір мутация сойкес келеді. Тышқанның радиация әсеріне мутабильділігі дрозофиладан жоғары. Маймылдар рентген сәулесіне тышқаннан гөрі 2-3 есе сезімтал келеді. Генетикалық факторларға бай-ланысты болгандықтан мутабильділікті қолдан сүрыптау ар-қылы арттырып не кемітіп отыруға болады. Қазіргі кезде селекциялық жолмен мутабильділігі жоғары жана линиялар шығарылуда.

Мутагендер (мутагендік факторлар) деп мутацияның жүруіне өсер ететін заттарды атайды. Бүған физикалық әсерлер (ультракүлғін сөуле, рентген сәулесі, нейтрондар б, в, г-бөлшектері т. б.), химиялык заттар (алкидті қосылыс-тар, алколоидтар, нуклеин қышқылдарының аналогтары т.б.) жатады. Мутагсндердің өсері, олардын табиғатына, мөлшеріне, өсер ету жағдайына, сондай-ақ организмнің генотипіне, даму сатысына және физиологиялык жағдайына байланысты. Мутагендер организм өзгергіштігін кенет жеделдетеді, бүл селекция жүмысының нәтижелі өтуіне жағдай туғызады.

Мутант — организмнін мутация нәтижесінде алғашқы типіне үқсамайтын, түкым қуатын езгешс қасиеттері бар түлғалары. Мутанттардың селекцияда, микроорганизмдердің биохимиялық мутанттарының генетикалык аппаратын зсрт-теуде үлкен мәні бар.

Мутациялар табиғи жағдайда немесе лабораториялык жағдайда жануарлармсн өсімдіктерде пайда болады, мүндай мутацияларды спонтанды (лат. "спонтанеус" —өздігінен) дейді. Жасаиды жолмен ор түрлі мутагендік факторлармен осер ету арқылы адамның тікелей басшылығымен алынған мутация-лардьғ индукциялық (лат. "индукцио" —қоздыру) деп атайды.

ГЕНДЕР МУТАЦИЯСЫ (НҮКТЕЛІК МУТАЦИЯ). Гендік мутацияны генетикалық кодтағы өзгеріс деп түсіну керек. Кодтағы өзгсріс дегеніміз хромосомадағы ДНҚ моле-куласынан (геном) иРНҚ арқылы цитоплазмаға арнаулы белок түзілісін деп берілген нүсқаудың өзгеріп, басқа бело-ктьщ түзілуі.

Жаңа мутациялар аутосомдағы, жыныс хромосомала-рындағы гендер болады. Олар барлық органикалық форма-ларда кездеседі.

Турдің жабайы формаларына тон гендер аллелін жабайы, ал өзгергендерін мутантты гендер деп атайды. Олар-дың арасында принципті айырмашылық жоқ. Түрдің жабайы формаларына тән коптегсн гендерге бір кезде мутант-ты гендер болған, одан соң қолайлы мутанттык, аллельдер түр эволюциясының барысында сол түрге жататын особь-тардың боріне таралатындай байытылған.

Нуктелік мутациялар ДНҚ молекуласының бір жерінде нуклеотидтің түсіп қалуы нсмесе бір нуклеотидтің басқасы-мен орын ауыстыруы нәтижесіндс пайда болады. Бірінші жағдайда и-РНҚ дүрыс хабарды цитоплазмага апармайды, себебі ДНҚ молекуласындағы кодонның құрамы (реттілігі) нуклеотид түсіп қалған, не жаңадан кірген жерден бастап өзгереді. Мысалы, егер ДНҚ молекуласындағы иРНҚ синтезделетін нуклеотидтердің қалыпты құрамы: АГУЦА-УЦГГУУУАААГЦГ ... болса, онда бір негізді жоғалтқаніхан кейін, (мысалы Ц-ны), ДНҚ молекуласының триплеттері мынадай болады: АГУ АУЦ ГЕУ УУА ААГ .... Бүл осы ара-лықтан синтезделетін белок құрамын мүлде өзгертеді. Осы-ған үқсас нәтиже егер басқа нуклеотид қосылса да болады.

Егер бір нуклеотид екінші бір нуклеотидпен ауысты-рылса, мысалы адениннің орнына гуанин түрса, онда бір триплеттің ғана құрамы өзгереді. Осының салдарынан син-тезделген белоктың құрамына бір амин кышқылының орнына 'басқасы келеді. Мысалы, адам гемоглобинінің құра-мындағы глутамин амин қышқылы бірде валинмен, екіншісінде лизинмен, үшіншісінде глицинмен ауыстырыл-ған делік. Код кестесінің (5-кесте) осы амин қышқылдары-на сәйкес кодондарды салыстырып, олардың арасындағы үқсастықты байқауға болады; біріншіде глутамин кодоны ЦАГ-да Ц негізі А-ға ауысқандықтан лизинге сәйкес кодон; екіншісінде Ц мен А-ның орнын Г басқан —ол глицинге сәйкес; ақырында тағы Ц мен А-ның орнына валинге сой-кес Г және У негіздері келген. Өте бағалы жаңалықтар, әсіресе нүктелік мутацияның химиялық табиғатын білуде микроорганизмдерді зерттегенде ашылған. Ішек таяқшасын-да триптофан синтезіне қажетті фермент триптофансинтета-за бар. Оның амин қышқылдар құрамы белгілі. Осы трип-тофансинтетазаның молекуласының белгілі бір жерінде қалыпты жағдайда глицин амин қышқылы орналасқан. Қалыпты штамдар ішінсн триптофан синтезін бұзатын бірнеше мутациялар табылады. Бір жағдайда глицин глута-минмен, екіншісінде аргининмен орын ауыстырған болып шықты. Әрі қарай осы өзгерген штамдар жаңа мутациялар берді, онда глутамин біріпде валинмен, екіншісінде аланин-мсн, ал ушіншісінде — глицинге қайта оралған; аргинин серинмен ауысқан немссе қайтадан глициніе оралган.

Нүктелік мутациялар доминантты, жартылай доминантты және рецессивті болады. Рецессивті мутациялар жиірек кездеседі. Мутациялар белок жүйесін бұзганда белок олсізденеді немесс оргапизм даму барысында істен шығады, сондықтан рециссізті мутациялардың болуы табиги жағдай.

Егср екінші хромосоманың гендері өзгермесе, онда белок синтезі осы хромосоманың ДНҚ-сының көмегімен жүреді, сондықтан гетерозиготаларда мутациялық озгсрістер байқалмайды, олар тек гомозиготалык күйде ғана шыгады.

Ұзакка созылган эволюцияның нотижесінде жеке даму барысында орбір организмде белоктар мсн ферменттердің езара орекеттесу жүйссі құрылған. Кез келген мутация ор түрлі дәрежсде осы жүйелілікті бүзып, жүйе иесіиің омір сүргіштігін төмендетсді. Көбінде озгерген формалар бслгілі бір коршаған ортаға бейімделе алмайды, бірақ бүдан олар мүлдс керегі жок, дегсн пікір тумауы керек. Егер коршаған орта осеріи өзгертсе, олар сүрыптауга түсіп, әрі қарай та-рауы мүмкін. Қоршаған ортага шыдай алмайтын кейбір му-таідияның басқадай пайдалы шаруашылық маңызы болуы мүмкін. Ондай жануарларға сәйкес күтім жасап, қоршаған орта әсерінен арашаласа адам оларды өз иғілігіне пайдалана алады. Бірак организмнің дамуы қатты бүзылғанда леталь-ды мутациялардьщ зиянынан, ксмтар гомозиготалы үрпақ-тар пайда болады. Мүндай өлтіргіш мутациялар кептеген жануарларда, ауылшаруашылық малдарында кездеседі. Ола-рға мысалы, түксіз және бульдог торіздес бүзаулар, аяқтары қысқа балапандар, ми жарығы бар торайлар, аяқ буындары біріккен қозылар және бүзаулар т.с.с. жатады.

Тура және кері мутациялар. Геннің жабайы түрінен жаңа күйге мутациялануын - тура, ал мутант күйден жа-байы қалпына келуін - кері мутация деп атайды. Ал кері мутацияланудың езін гсн реверсиясы (тегіне тарту) деп атайды. Тура мутациялар жиірек кездессді. Бастапқы гена-ралық сатысыз-ақ жаңа жағдайға және керісінше мутация-ланады. Тура мутацияның жиілігі ор түрлі гендер үшін түрліше, орта есеппен алғанда 100 мың немесе 1 млн. генге 1-ден 5-ке дейін тура мутация кследі, демек мутациялар оте сирек келетін құбылыс. Алайда өсімдіктер, жануарлар попу-ляциялары мен адамда ор түрлі мутанттық гендердің кездесуінің жиілігін сскерсе,бүл цифр кенет артады. Белгілі бір мутациялар ор түрлі уақытта пайда болуы мүмкін. Бүл гендердің бір бағытта әлденеше рет мутациялана алатынын білдіреді. Тура жонс ксрі мутацияга жоғарыда кслтірілгсн ішек таяқшасының триптофансинтетазасы синтезінің мута-Циясын мысалға келтіруге болады. Мүнда жсті мутацияиың бесеуі гура, екеуі ғана кері.

Нүктелік мутациялардың шығу себептері. Организмдерде жаңа белгілсрдің пайда болуымен байланысты нүктелік мутациялар оте сирск кездеседі.
Барлық гендік мутациялар 2 үлкен класқа бөлінеді:


  1. Нуклеотидтер жұбының алмасуы.

  2. Код шекараларының жылуының өзгеруіне байланысты мутациялар.

Нуклеотидтер жұбының алмасуы 2 түрлі бағытта өтеді:

А) Транзиция

Б) Трансверсия

Транзиция деп – ДНК молекуласындағы 1 пуриндік негіздің 2-ші стмив негіздің екінші пуриндік негізге ауысуы (адениннің гуанинге немесе керісінше 1 перимидиндік негіздің екінші перимидиндік негізге мысалы тиминнің цитозинге немесе керісінше) алмасуына әкелетін гендік мутациялар.

Трансверсия деп – пурин перимидин бағытының өзгеруіне әкелетін күрделі алмасу. Мысалы: АТ ЦГ немесе АТ ТА. Код шекарасының оқылуының өзгеруі ДНК молекуласына артық нуклеотидтің енуіне немесе одан нуклеотид жұбының түсіп қалуына байланысты болады. Гендік мутацияның организм үшін әсері арқылы олардың басым көпшілігі рецессивті болғандықтан әсері фенотипке әруақытта байқала бермейді. Сонда да белгілі геннің 1 азотты негізінің ғана өзгеруінің фенотипке терең әсер етуінің бірнеше мысалы белгілі. Адамда тұқым қуалауын ауру арақ пішінде клеткалы анимия деп аталатын ауру белгілі. Бұл ауру геомоглабиннің В тізбегінің ывоалтывд ДНК молекуласының гендік мутациясына байланысты. Мутация нәтижесінде науқастардың эротроциттерінің пішіні орақ тәрізді болып оттек тасу қабілетінен айтады. Мұндай мутация кузінде 146 аминқышқылынан құралған В тізбегінің 6-шы аминқышқылы глутаиминнің орнына валин қалдығын орналасады. Осындай өзгеріс нәтижесінде эротроциттер домалақ пішіннен орақ пішінге айнып тез жойыла байланысты сөйтіп қаназдылық анимия дамиды. Бұл мутация аоыврлоаы аллель бойынша гомозиготалы адамды өлімге душар еткізеді.

Мутация пайдалы зиянды және бейтарап болуы мүмкін. Организм үшін гендік мутацияның басым көпшілігінің зиянды әсері бар. Мутация туғызатын факторды мутагенді факторлар деп аталады. Олар табиғатына қарай физикалық және химиялық болып 2-ге бөлінеді. Физикалық мутагенді факторларға иондаушы және ультра күлгін рентген сәулелері жатады. Ал химиялық мутагенді факторға азотты қышқыл күкірт азот қосылғыштары жатады. ДНК тізбегіндегі физикалық және химиялық мутагеннің әсері арқылы пайда болатын мутациялық өзгерістерінің қайта қалпына келуі және ДНК репликациясында түзілген жаңылыстың арнайы ферменттер жүйесі арқылы бастапқы қалпына келуі реперация деп аталады. Реперацяның 3 негізгі механизмі белгілі –

1) Фотореактивация деп – организмде ультра күлгін сәулелердің әсері арқылы пайда болатын тимин мүшелерінің көк күлгін жарықтың әсерінен ажырауын айтады.

Тимин гимерлері ДНК-ң құрылымын бұзады нәтижесінде ДНК реплекацияның өтуіне қиыншылық туады. Көк-күлгін жарық дезоксирибо перимидинфотолиаза ферментін белсендіреді. Нәтижесінде тимин гимерлері бір-бірінен ажырап А-Т аралығы сутектік байланыс қалпына келеді.

2) Эксцизиялық реперация, бұл кезде жарықтың қажеті жоқ, сондықтан кейде оны қараңғылық реперациясы деп атайды. Бұл реперация бойынша ферментінің көмегімен іске асады. 1-ші кезеңде эндонуклеаза ферменттері ДНК молекуласын мутациялық өзгерістерді мысалы тимин гимерлерін тауып оны үзеді. Нәтижесінде ДНК тізбегінде тесік пайда болады содан кейін ДНК бос ұштарын экзонуклеаза ферменті жанын оны ары қарай үзіп тесікті кеңейтеді, одан соң полимераза ферменті. Мутагендік өзгерісі жоқ екінші тізбекті матрица ретінде пайдаланып үзілген фрагменттің синтезін асырады. Соңғы кезде лигаза ферментті жаңадан сипатталатын тізбекті бастапқы тізбекпен жалғастырады.

3) Пострепликациялық реперация бұл жағдайда ДНК-ң қалпына келуі репликациядан кейін іске асады. Полимераза ферменті өзгерісі бар бөлікке комлементарлы жаңа тізбекті синтездемей өткізіп жібереді. Нәтижесінде жаңа тізбекте тесік пайда болады. Дұрыс генетикалық ақпарат бастапқы 2–ші тізбекте болады. Осы тізбекке комплементарлы үздіні полимераза ферменті синтезделеді. Содан соң тесікті жасырады.




Лекция № 14

Рекомбинантты ДНҚ туралы түсінік


Жоспары:
1.ДНҚ рестрикциясы. Рестриктазалар,олардың түрлері, қасиеті және ДНҚ-ға әсер ету ерекшеліктері.

2.Рестрикциялық карта құру. Генді клондау. Геном кітапханасын құру. 3.Плазмидтердің қасиеттері және қызметтері. Плазмидті векторлар. 4.Клонындалған ДНҚ-ның фрагменттерінің тізбегін анықтау. Нуклеин қышқылдарының гибридизациясы, оның мүмкіндіктері.

5.ДНҚ-зондтар. Блоттинг, оның түрлері. Саузерн-блот талдау. Нозерн-болт талдау.

6.Полимеразды тізбекті реакция (ПТР). ПТР көмегімен гендерді синтездеу.



Лекция мәтіні:
Рестрикциялау — модификациялау құбылысы 50-ші жылдары байқалған болатын. Рестрикция тоқтату деген мағынаны білдіреді, ал модификация — молекуланың белгілі топтарын химиялық жолмен немесе оларға баска топтарды жалғау арқылы өзгерту. Рестрикция мен модификациялау құпиясын В. Арбер ашты.

Бактерияның "өзінің" нуклеин кышқылын "бөтен" фагтардың (вирустардың) нуклеин қышқылынан ажырататын арнайы ферменттері болады. Рестрикция ферменттері фагтың нуклеин қышқылын үзіп, оның клеткада көбеюіне жол бермейді. Рестриктазалармен қатар бактерияларда метилаза деген фермент бар. Ол бактерияның өзінің ДНҚ тізбегіндегі азоттық негіздерге белгілі мөлшерде әрбір репликациядан кейін метил тобын (СН3) жалғап, модификациялап отырады. Метилденген ДНҚ-ны рестриктаза "өзінікі" санап оған "тиіспейді". Бұл бактериялардағы өзіндік бір "иммундык жүйе" іспеттес. Дегенмен, кейде бактерия клеткасына енген фагтың кейбір нуклеин қышқылы кездейсоқ метилденіп кетеді. Осы қателігінен бактерияның өзі фагтың әсерінен қырылып калады. Осы құбылысты О. Смит, Д. Натанс және В. Арбер ашты. Рестриктазалар табиғаттың ген инженериясына арнап жасаған таптырмас құралы. Бактерия әр түрлі болғандықтан олардың рестриктазалары ДНҚ-ны әртүрлі жолмен үзеді.[Қазір 500-ден аса рестриктаза түрі белгілі және олар ДНҚ-ны бір-бірінен өзгеше 120 жерінен үзе алады. Яғни зерттеуші рестриктазаны тандай отырып ДНҚ-дан қалаған ферментті нсмесе генді бүлдірмей бүтін күйінде кесіп алады.

Генді бөліп алу мен ген өркенін (клондарын) алу үшін әртүрлі объектілер (бактериялардан, сүтқоректілер клеткаларынан, құстардан т. б. алынған) және әртүрлі вирустар жұқтырылган ортада өсірілетін ерекше ферменттер құрал ретінде пайдаланылады. Негізіндс олар үш түрлі ферменттер: рестриктазалар, лигаза жәис кері транскриптаза.

Рестриктазалар - дезоксирибонуклеазалардың ДНҚ молекуласын қысқа немесе ұзын болшектерге тіпті жеке нуклеотидтерге дейін кесетін ферменттердің бір түрі. Рестриктазалардың ерскшеліктері ДНҚ молекуласын кез кслген жерден кеспей тек белгілі нуклеотидтер арасынан кесуінде. Әрбір рестриктазаның тандайтын нуклеотидтср орналасу тәртібі бар. Бұл әдетте 4-6 жұп нуклеотидтер, әртүрлі рестриктазалар үзетін жеріндегі нуклеотидтердің құрамында айырмашылығы болады. Мысалы Е. соІі рестриктазасы ДНҚ молекуласын ГААТТЦ учаскесіндс үзеді, Ват -НІ-ГГАТЦЦ учаскесінде. Қазір әр түрлі рестрикта-залардың жүзден артық өзіндік бірізділігі белгілі.

ДНК тізбегінің ұзына бойында нуклеотидтер кездейсоқ орналасса, теөт белгілі нуклеотидтен тұратын жүйелілік (бірізділік) 1/256-ға, ал алты нуклеотидтен - 1/4096 тең болады. Сондықтан рестриктазалар ДНК-ны бірнеше жүздеген немесе мындаған нуклеотидтер жұптарынан түратын бөлшектерге үзеді,

Лигаза - ДНҚ-ның бос ұштарын бір-біріне жалғайтын фермент. Бұл фермент қалыпты клеткаларда ДНҚ синтезіне және репарация (қалпына келу) процестеріне қатысады, яғни ДНҚ молекуласының біраз бүлінген жерлерін қалпына келтіруге қатысады.

Кері транскриптаза - ДНҚ-полимераза тәріздес фермент. Бірақ ДНҚ-ны ДНҚ-дан емес РНҚ-дан синтездейді. РНҚ-полимеразамен салыстырғанда ол кері бағытта жүмыс істейді, яғни ДНҚ-дан РНҚ-ға емес, РНҚ-дан ДНҚ-ға. Кері транскриптаза ферментінің қалыпты сау клеткалары бар ма, және оларда ДНҚ синтезі РНҚ-да жүре ме? Бұл күмәнді сүрақ әлі толық шешілмеген. Алайда бұл фермент, эукариоттар клеткаларында оларға ДНҚ арқылы көбейетін РНҚ-сы бар вирустарды жұқтырғаннан кейін пайда болады. Бұл вирустардың геномы кері транскриптазаны кодтайды, соның көмегімен ви-рустың ДНҚ-үлгісі құрылады да, кейін вирустар молекулала-ының РНҚ-сы синтезделеді.



ДНҚ РЕКОМБИНАНТТАРЫ (БУДАН ДНҚЛАР)

Генетикалық рекомбинацияның мәні - екі хромосоманың өзара гендерімен алмасуында. Екі немесе одан көп тұкым қуатын анықтауышы бар клетканың немесе организмнің пайда болуына әкеп соғатын кез келген процесті 1958 жылы Понтекорво рекомбинация деп атады. Міндетті түрде сүтқоректілердің жыныс клеткалары пайда болғанда, мейоздың барысында гомологты хромосомалар гендсрімен алмасады (кроссинговер — айқасу кұбылысы). Осы алмасулар ұрпақтарға берілетін тұқым қуатын белгілердің араласуын түсіндіруге мүмкіндік бсреді.

Гендер алмасуын, сондай-ақ клеткаға "бөтен" геиді енгізуді генетикалық рекомбинация арқылы in vitro — организмнен тыс жасауға болады.

1972 жылы П. Бергтің лабораториясында (АҚШ, Станфорд университеті) ең бірінші рекомбинантты деп аталатын будан ДНҚ молекуласы алынды. Оның құрамына лямбда (X) бактериофагының геномы мен 5" К40 вирус геномы кірді.

Организмнен тыс рекомбинация әдісі, ор түрдің ДНҚ-ларын (табиғи немесе жасанды) бөліп алып, оларды бір-бірімен қосуды, содан кейін осы рекомбинантты ДНҚ-ны тірі клеткаға енгізіп, жаңа белгінің пайда болуын мысалы, ерекше белок синтезін жүргізуді көздейді

Мұндай эксперименттердің мақсаты ДНҚ-дағы белгілі бір нуклеотидтер жүйелілігін "векторға" енгізіп, кейін клетканың ішінде жұмыс істеткізу. ДНҚ фрагментін вектормен жалғастыру төмендегідей жолдармен жүргізіледі:

1) ректрикциялық эндонуклеазалардың қатысуымен пайда болған ДНҚ-ның жабысқақ ұштары арқылы;

2) ДНҚ-ның әрбір тізбегіне косымша полинуклеотидтер фрагменттерін синтездеу (поли-А, поли-Т);

3) Т4-лигаза ферментінің көмегімен тұқыл ұштарын жалғау. 1974 жылдан бастап рекомбинантты ДНҚ алу жұмыстары көптеп жүргізілді.

Кері транскриптазаньщ көмегімен иРНҚ молекуласында ДНҚ тізбегі синтезделеді (кДНҚ), содан кейін иРНҚ сілтінің көмегімен алынып тасталады да ДНҚ-полимеразанын, көмегімен ДНҚ-ның екінші тізбегі құрылады. Экзонуклеаза ферментімен ДНҚ-ның екі тізбегі де кысқартылып, ұштық трансфераза арқылы олардың ұштарына поли-Т жүйелілігі тігіледі. Векторлық плазмиданың сақина ДНҚ-сын рестриктазамен кесіп желі (сызық) түріне келтіреді, содан кейін экзонуклеазамен қысқартып, ұштық трансферазамен поли-А жүйесін тігеді. Ең ақырғы кезеңде осы ДНК, молекуласының екі типін жалғап будан молекулалы синтезделген геномы бар векторлык. плазмида алады. ДНҚ тізбегінің үзілген жерлерін лигазаның көмегімен жалғайды. Бұл баяндалған жағдайда векторлык.плазмидаға қандай ген енгізілгені белгілі. Бірақ трансгеноз жұмыстарында көбінесе көптеген ДНҚ фрагменттері пайданылады, ал солардың ішінде бірлі-жарымында ғана "керек" ген болады. Осыған байланысты ген инженериясында кажет гені бар ДНҚ фрагменттерін табу және оны бөліп алу әдісінің маңызы өте зор. Осы керек гені бар ДНҚ бөлшегін алу үшін "бытыра мылтық" деп аталатын тәсіл колданылады. Оның мәні мынада: ДНҚ ферменттер аркылы көптеген ұсақ бөлшектерге бытыратылады, содан кейін соқыр тәуекелмен оны вектордың ДНҚ молекуласымен будандастырады. Осының алдында векторлық ДНҚ-ны желі түріне келтіру үшін және жабысқақ ұштар пайда болу үшін рестриктазамен өңдейді. Ішек таяқшасына рекомбинантты молекуланы кіргізгеннен соң, сұрыптайтын қоректік ортаның көмегімен қажетті гені бар ДНҚ бөлшектері түскен бактерияларды бөліп алады. Кірген генді оның шығаратын заты (фермент, гормон т.б.) арқылы тауып алады. Бактериялар көбейгенде онын құрамындағы рекомбинантты ДНҚ еселенеді де ДНҚ өркендері (клондары) пайда болады.

Матрицалық Рнк негізінде оған комплементарлы қос тізхбекті ДНК синтездеуді гибридтелу деп аталады. Бұл кері транскрипция процесі арқасында мүмкін болады. Ең алдымен м РНК- ның поли А ұшын праймермен гибридтейді. Праймер бұл жерде олигодезоксириботимидиннің қысқа тізбегі болып табылады. Ол бос күйіндегі 3 ΄ ұшты қалыптастыру үшін және кері транскриптаза ферменті жұмысты бастау үшін комплементарлы жұптастыра отырып 5′→3′ бағытында ДНК молекуласын синтездейді реакция өнімі ДНК тізбегімен комплементарлы жұптасқан РНК матрица тізбегінен тұратын гибритті молекула . In Vitro жағдайларында бұл процесті жүргізгенде жалғыз практикалық қиыншылық бар. Кері транскриптаза ферменті м РНК – ның 5′ ұшына жетпей кез- келген нүктеде тоқтап қалуы мүмкін . Ал м РНК – ның 5′ ұшына жетсе , фермент синтезделетін ДНК- ның ұшында тұзақ түзеді . Яғни түзілген ДНК- ның 3′ ұшында 10-20 нуклеотид жұбынан тұратын иілім пайда болады . Осы кезеңде м РНК матрицаны сілтімен өңдеу арқылы ыдыратады. Нәтижесінде мРНК –ға комплементарлы 1 тізбекті ДНК түзілуі . Оны к ДНК деп атайды . Олардың 3′ ұшындағы иілім ДНК полимераза бір ферменті үшін праймер болып табылады. ДНК полимераза бір ДНК –ны комплементар тізбек синтездеу арқылы қос тізбекті ДНК-ға айналады. Реакция өнімі ұшында иілім бар 2 тізбекті ДНК молекууласы иілімді нуклеовза

S1 ферменті арқылы кесіп, кәдімгі екі тізбекті ДНК алады. Оны ары қарай синтетикалық геннің көп мөлшерін алу үшін клоундауға болады. Мұндай клонды кДНК клоны деп атайды. Клондау техникасы генетикалық материалдардан жеке гендерді тікелей алуға көп қолданылады.Әрбір жеке ген эукариоттарының геномының өте азғантай бөлігі болып табылады. Мысалы: сүтқоректілердің геномының мөлшері 109 нуклеотид жұбын құрайды.Ал орташа гендер шамамен 5 мың нуклеотид жұбтарынан тұрады, яғни ядродан РНК-ның 0,0005 осындай болар болмас материалды идентификациялау үшін арнайы заттар пайдаланады. Яғни бұл әдісте таңбаланған радиоактивті РНК немес ДНК заттар пайдаланады. Бұл кезде туындайтын қиындық арнайы белокқа сәйкес келетін мРНК алу бұл үшін арнайы әдіс “Гибрид тұншықтыратын трансляция әдісі пайдаланады” Бұл әдістің негізінде кДНК –ның м РНК-ның гибридтеліп, оның трансляциясына кеергі келтіру, қасиеті жатады. Бұрынғы уақыттарда гендерді бөліп алуда мРНК пайдаланған, Ал қазіргі уақытта химиялық тұрақты кДНК пайдаланады. ДНК-ны бір тізбекті фрагменттенрге денатурациялап, одан соң түзілген фрагменттерді фильтрге ауыстырады. Сол кезде олар имобилизацияланады. Бұл сарғыш қағазбен, су сіңіруге ұқсайды. Осы әдісті ойлап тапқан ғалымдардың атымен Саузерн блоттинг деп аталады. Нитроцелилозамен имобилизацияланған фрагменттерді радиоактивті зондпен In Vitro жағдайларында гибридтеуге болады. Бұл жағдайда әдіс Нозерн Блотинг деп аталады.

Бүкіл геномдардың ДНК-рын клондауды Шотган эксперимент деп атайды.Бұл үшін геномды қолайлы фрагменттерге бөледі.Одан соң фрагменттерді клондалатын векторға тіркесіп, химералық векторлар алады. Осындай фрагменттер жинағын геном библиотекасы деп атайды. Осындай жолмен алынған бактериофагтардың немесе плазмидалық векторды шексіз ұзақ уақыт сақтауға болады. Осы белоктардан бір-бірін клонды селекциялап, іріктеп алу үшін гибридтеу әдісі қолданылады. ′


Лекция 15

Дамудың молекулалық биологиясы және биотехнология жетістіктері.

Жоспары:

1. Дамудың молекулалық биологиясы .Гердон тәжірибелері

2.Жекелеген гендердің амплификациясы

3.Дамудың қатерлі кезеңдері.

4. Биотехнология Өсімдіктер биотехнологиясы. Трансгенді жануарлар.

5. Микроорганизмдер биотехнологиясы.



6.Гендік терапия. Молекулалық ауруларды емдеу.

Лекция мәтіні:
Онтогенетикалық жіктелу (дифференцировка) дегеніміз— даму барысында организмде (немесе жеке бөлігінде) морфологиялық өзгешеліктердің (мүшелердің) пайда болуы. Онтогенездің барысында клеткалар мен тканьдер мүшеленуінің генетикалық механизмдері өте күрделі. Онтогенезді генетикалық зерттеудің бастапқы кезеңі: бір ген— бір белгі, немесе ген ДНҚ-РНҚ-белок-.белгі заңдылығына сәйкес белгінің қалыптасуындағы геннің әсеріне талдау жасау болып табылады.Клеткалардың жіктелуі (мүшеленуі) деп ұрықтанған жүмыртқа клеткасының беліну кезеңіндегі бірте-бірте бір бірінен айырмашылығының қалыптасудың соңында әр түрлі"мамандандырылған" арнаулы тканьдердің пайда болу процесін айтады. Микроскоп арқылы бір организмнің тканьдарының клеткалары бір бірінен құрылысы, көлемі, сырт пішіні өзгеше екенін көруге болады. Сонымен катар әр түрге жататын жануарлардың бір түрлі тканьдерінің клеткаларының ұқсастығы байқалады. Бүл клеткалардың әр түрінің өзіне тән ерекше қызмет атқаруына бейімделуіне байланысты. Клеткалардың жіктелу механизмін анықтау қазіргі биологияның басты мәселелерінің бірі. Жіктелу қайтымсыз процесс болғандықтан кейбір авторлар жіктелу негізінде әрбір клеткаларғагендердің әр турлі саны болады деп түсінген. Бүл ұғымның қисықтығы дәлелденді. Біздің ғасырдың басында орбір сомалық клетканың ұрықтанған жұмыртқа клеткасындағыдай мөлшерде хромосомалары болатыны көрсетілді. Клеткалардың ясіктелуі кезінде гендердің түсіп қалуы женіндегі сұраққа арнаулы эксперименттерде ядроларды ауыстырып салу жауап берді. Дж. Гердон (1962) ультракүлгін сэулемен бақаның жүмыртқа клеткасының ядросын бүзып, оның орнына жаңа туған бақаның (головастик) ішек эпителиінің ядросын отыргызды. Қалыпты бақалардың дамуын осы ядролардың азғана проценті қамтамасыз етті. Бүл зерттеулер ішек клеткаларының ядролары организмдегі барлық клеткалар типінің жіктелуіне жететін гендері бар екенін көрсетті. Кейінгі жұмыстарында Гердон алғашқы он рет бөлінгенде бақа эмбрионының дамуында ядроларда РНҚ синтезделмейтінін көрсетті. Клетка бұл кезеңде жылдам бөлініп ДНҚ-ны еселейді. Сонымен қатар клеткаларда белок синтезделе береді, оны аналық геномдағы жұмыртқа клеткасының ДНҚ-сында ұрықтанғанға дейінгі пайда болған РНҚ атқарады. Ұрық ядроларында иРНҚ синтезі орта бластула сатысында басталады. Соңғы бластула сатысында жаңа тРНҚ және гаструла сатысында рРНҚ түзіледі де жаңа рибосомалар пайда бола бастайды. Бүл кезде ұрықтың алғашқы клеткаларының үш типі жіктеліп бітеді: эктодерма, эндодерма және мезодерма. Алғашқы зерттеулерде негізгі эксперименттер тікен терілер мен (теңіз кірпілері), қосмекенділерге (бақа, саламандралар) жүргізілді, себебі олардан жүмыртқа клеткаларын алып ұрықтандыру және ұрықтың даму кезеңін бақылау оңай. Құстардың эмбриогенезі жұмыртқаның қалың қабыршығы астында, ал сүтқоректілердікі анасының жатырында өтеді. Бұл олармен жұмыс істеуді киындатады. Тек кейінгі жылдарда ғана тышқандар ұрықтарының ерте сатысын бақылайтын әдіс жасалды.

Көп клеткалы организмнің барлық клеткаларында гендердің ұқсас жиынтықтары болады, бірақ түрлі уақытта әр түрлі тканьдерде сан алуан гендер әрекет етеді, солардың арқасында жіктелу іске асады. Ген әсерінің реттелуі әр түрлі: репликация, транскрипция және трансляция деңгейлерінде болады.

Жануарлар мен өсімдіктердің кейбір түрлерінің мүшеленген тканьдарының клеткаларында эндомитоз және политения құбылыстары байқалады. Мәселен кейбір өсімдіктердің крахмал түзетін клеткаларында, сүтқоректілердің бауыры мен ішек эпителиінде эндомитоз жүреді, соның нәтижесінде полиплоидия орын алады. Бүндай жағдай сілекей бездерінің интенсивті қызмет жасап жатқан ядроларына, ішекке және қосканаттылар личинкала рының малпигий түйіршіктеріне де тән. Осы мысалдардың бәрі хромосомалардың күйі мен санының организм сомалық клеткаларының морфофизиологиялық жіктелуімен сөзсіз байланысы бар екенін көрсетеді.

Жекелеген гендердің көбею құбылысы — гендердің амплификациясы анағұрлым кең таралған. Дрозофиланың алып хромосомаларындағы пуфтардың пайда болуы. Личинкалардың дамуындағы әрбір саты әртүрлі пуфтардың белсенділігімен сипатталады. Әр сатыда гендердің әр түрлі қатынасатынын сипаттайды. Кейбір омыртқалылардың ооциттерінде "шам жіпшелері" типтес хромосомалар табылды. "Шам жіпшелерінің" ілмектері хромосоманың шиыршығы жазылған бөліктері болып табылады. Олардан иРНҚ-ның көп мелшері табылды, демек гендер белсенді түрде қызмет етеді.

Онтогенездің дербестілігі даму стадияларының (гр. "стадион" —кезең) болуына байланысты, ол жіктелу мен морфогенез процестері бойынша бір-бірінен өзгешелігі болатын жекеленген кезеңдер деп аталады. Толық түрленулері (метаморфоз) бар насекомдардағы эмбрионалдық (ұрпақтық), личинкалық, қуыршақтық және имагиналдылық (лат. "имаго" — бейне, түр) кезеңдер дамудың айқын мысалы болып табылады.

Стадиялық өзгерістер бірінен кейін бірі келетін қатаң қайтымсыз өзгерістер. Эмбриологтардың бақылауларына қарағанда ортаның күрт өзгеруі эмбриондық дамудың белгілі бір кезенде ұрықты өлуге немесе әр түрлі кемтарлыққа үшырататыны анықталды. Бұл кезендер кезінде ортаның өзгеруіне ұрықтың өте сезімталдығы байқалады және ондай кезеңдер зерттелген омыртқалылардың бәрінен - балықтардан, қосмекенділерден, құстардан, оның ішінде тауықтан табылды. Мұны қатерлі кезеңдер деп атайды. Бұл кезеңдер соңғы бластулада көрініп, негізгі морфогенез процесінің алдын алады. Тауықта қатерлі кезеңде — инкубацияның 2-3-ші күні қан айналым жүйесі қалыптасқанда; 8-9-шы күні құстарға тән мүшелер мен тканьдер айқын жіктелерде; 19-шы күні жіктелу процесі қайта ұлғайған және дем алу типі өзгерер кезде. Сонымен қатерлі кезендер морфогенездің негізгі өзгерістерінің алдында — зат алмасуы мен синтезінің қайта құрылуы жүргенде болады. Осы кезеңдерде физиологиялық процестер нашарлап РНҚ-ның мөлшері азаяды. Қатерлі кезенде құс эмбриондары инкубация тәртібінің өзгеруіне — температура және ауаның ылғалдылығына, жұмыртқаларды желпуге өте сезімтал болады.

"Биотехнология" атауын ең алғаш венгр Карл Эреки 1919 жылы тірі организмдердің көмегімен өндірілетін жұмыстарды анықтау үшін қолданған. 1986 жылғы шығарылған Биологиялық энциклопедиялық сөздікте, биотехнология деп өндірістегі биологиялық процестсрді және тірі организмдерді қолдануды айтады. Европалық биотехнология одағы (ЕҒВ) осы күнгі биотехнологияны табиғаттану ғылымдарын (биологияны, химияны, физиканы) және инжснерлік ғылымдарды (мысалы электрониканы биоөнеркәсіптегі биожүйелерге қолдану деп біледі, ал Европалық комиссия (ЕС) — биологиялық қауымдастықты қажетті өнімдермен және қызметтермен қамтамасыз ету деп толықтырады.

Биотехнология алғашқы кезеңде негізінен микробиологияның және энзимологияның жетістіктеріне сүйенсе, ал соңғы 20-25 жылда ол өзінің дамуына итеруші күшті қарқынды дамып келе жатқан биологиялык ғылымдардан алды, олар: вирусология, молекулалық және клеткалық биология, молекулалық генетика.

Бүгінгі биотехнология ғылыми-техникалық прогрестің алдынғы катарынан орын алады.

Ген инженериясының әдістерінің ашылуы биотехнология деген ерекше өндіріс түрінің дүниеге келуіне ықпал жасап отыр. Биотехнология дегеніміз микроорганизмдердің және таза белоктардың (ферменттердің) жүргізетін биологиялык процестерін халық шаруашылығының әртүрлі салаларында пайдалану.

Мал шаруашылығында алдағы 10-15 жыл ішінде биотехнологияның алға басуы (процесі) гендік, клеткалық және эмбриогенетикалық инженерияның дамуымен анықталмақшы.

Ген инженериясы молекулалық биологияның жаңа саласы. Ол лабораториялық әдіс арқылы генетикалық жүйелер мен түқымы өзгерген организмдерді алу жолын қарастырады. Ген инженериясының пайда болуы генетиканың, биохимияның, микробиологияңың және молекулалалық биологияның жетістіктерімен байланысты. Бүл атаудың екі түрі қол-данылады: "генетикалық инженерия" және "ген инжснериясы". Соңғы кезде "генетикалық инженерия" жалпылама түрде колданылып жүр, ген инженериясы да осының ішінс кіреді.

Молекулалық биология ғылыми жетістіктерінің нәтижесінде пайда болған ген инженериясы организмнің бағалы қасиетін сақтап қана қоймай оған жаңа әрі саналы қасист те бере алады. "Инженерия" деген атау құрастыру деген мағынаны білдіреді. Яғни ген инженериясы дегенді ген кұрастыру дсп түсіну қажст. Ген инженериясының дәуірі басталмай тұрып 1969 жылы Г. Корана нуклеотидтерді белгілі бір жүйемен орналасқан ДНҚ синтезінің методологиясын жасап берген. Жекеленгсн дербес амин қышқылы — ашытқының аланиндік тРНҚ-ның бастауыш жүйесі ашылганнан кейін Г. Корана химиялық жолмен осы РНҚ-ның көлсмі 77 полинуклеотидтен тұратын кодтық бөлігін синтездеді. Кейіннен 1979 жылы осы лабораторияда ішек таяқшасының тирозиндік тРНҚ-сы синтезделді және ол Т4 бактериофагының құрамына енгізіліп, бактерияның клеткасында жұмыс істеді.

Ген инженериясының дүниеге келген уақыты 1972 жыл деп есептеледі. Сол жылы Т. Берг алғаш рет пробиркада үш түрлі микроорганизмнің ДНҚ-ларыньщ фрагменттерінен жаңа гибридтік ДНҚ құрастырды. Бірақ маймылдың ,рак вирусының, бактериофагтын, және ішек бактериясының гендік ДНҚ-ларынан құрастырылған ол гибридтік ДНҚ-ның клетка ішінде ойдағыдай жұмыс істей алатындығы тексерілмеді, себебі құрамында рак вирусының нуклеин қышқылы болғандықтан ғалымдар тәуекелге бармады.

Клеткада жұмыс істей алатын гибридтік ДНҚ-ны 1973-74 жылдары С. Коэн мен Г. Бойер құрастырды. Олар басқа организмнен бөліп алған ДНҚ фрагментін (генін) бактерия плазмидасының құрамына енгізді. Ол плазмидадағы бөтен гендердің алғаш рет жаңа организм ішінде жұмыс істей алатынын көрсетті. Соның артынша-ақ дұние жүзінің көптеген ла-бораторияларында жүмыс істей алатын әр түрлі плазмидалар алынды. Совет елінде ондай бөтен гені бар плазмида академик А.А. Баевтың басшылығымен жасалды.

Ген инженериясы деп рекомбинантты ДНҚ-лар жасап, оларды басқа тірі клеткаларға енгізуді айтады.

Ген инженериясы шешетін мәселелер:

1) генді химиялық немесе ферментті қолдану жолымен синтездеу;

2) әр түрлі орғанизмнен алынған ДНҚ фрагменттерін бір-бірімен жалғастыру (ДНҚ рекомбинантгарын алу);

3) бөтен генді жаңа клеткага векторлық ДНҚ аркылы жеткізу және олардың қызмет жасауын қамтамасыз ету;

4) клеткаларға гендерді немесе генетикалық жүйелерді енгізу және бөтен белокты синтездеу;

5) бөтен генге ие болған клеткаларды таңдап бөліп алу жолдарын ашу.

Биотехнологияның болашағы бар бағыггарының бірі жасанды химерлерді алу. Химера деген түсінік құрама жануар дегенді білдіреді. Жануарлар бір тұқымнан, сондай-ақ әртүрлі тұқымнан немесе тіпті әр түрдің өкілдері болуы мүмкін. 8-клеткалы эмбриондарды протеолиттік ферменттері (протеиназа, трипсин) бар ортада тәрбиелеп өсіреді, ферменттср жұмыртқа клеткасының қабығын қорытады. Қабығынан айырылған эмбриондар бір-бірінс жабысады және біраз уақыттан кейін бірігеді, олардын клеткалары бір-бірімен араласады. Егер әртүрлі генетикалық ұялардан алынған эмбриондарды пайдаланса, қос эмбрион-химера пайда болады. Аналыққа трансплантацияланғаннан кейін мұндай эмбриондар жатырға орналасады (имплантацияланады лат. іт — ішіне, ріапіаге - отырғызу) және әрі даму барысында олардың өсуі түзеледі. Химер жануарларда екі эмбрионынның белгілері болады, яғни 4 ата-ананың ұрпағы деген сез.

Жасанды жолмен химерлер алудың екі негізгі әдісі бар:

1) аггрегациялық — толыққанды эмбриондарды біріктіру;

2) инъекциялық - эмбрионға басқа эмбрионның немесе бөгде клетканың бір немесе бірнеше клеткаларын енгізеді.

Екі әдіс бойынша да біріккен эмбриондар (екі немесе көп) клеткаларынан тұратын жануарлар пайда болады. Бірінші әдіспен лабораториялық тышқандардың химерлері алынған, агути (сұр) және қара тышқандар химерлері — шұбарала түсті болған.

Ағылшын эмбриологы Р. Гарднер (1968) химерлерді инъекциялық әдіспен алуды ұсынды. Бұл әдістің көмегімен тышқанның эмбрионына адам клеткалары енгізілген, химерлік тышқан туғаннан кейін оның тканьдарында адам гендері қызмет жасаған).

К. Маркерттің лабораториясында (Йель университеті, АҚШ) "үшқабат" химера-тышқандардың үш ұясының эмбриондарын біріктірудің нәтижесінде алынды. Туған тышқанның (алты ата-аналардың ұрпағы) жүні үш түсті болған. Теория бойынша құрамында 8 және, мүмкін, 16 ата-аналардың гендері болатын жануарларды жасауға болатыны айтылады.

1980-1982 жылдары құрамында тышқанның екі түрінің —белгілерін біріктірген химерлік жануарлар алынды. 1983 ж. С. Вилландсен тобы (Англия, Кембридж) алғашқы ауылшаруашылық малдарынын химерлерін алды. Қойдың (2п =54) және ешкінің (2п =60) эмбриондарының клеткаларын біріктіріп және химерлік эмбрионды екі түрінде аналығының жатырына салу (трансплантациялау) нәтижесінде (химерлік эмбрионның құрылысына бай-ланысты) екі түрге де тән белгілері бар жануарлар (қой, ешкілер) туды. Біреуінде басы, мүйізі, құйрығы және жүні денесінің кейбір жерлерінде - ешкінікі, ал қалған бөлігіндс -қойдың жүні. АҚШ-та 1987 ж. қой, ешкі химері және қойлардың рамбулье, финландрасы тұқымдарының химерлері алынды. Ресейде кара-ала түсті және қызыл түсті ірі қара мал тұқымдарынан химерлі бүзау алынды. Оның фенотипінде қара-ала түскен қатар қызыл дақтар бар (Л.К. Эрнст, 1987).

Химерлік жануарлар — вегетативтік гибридтер, олар мозаиктік белгілерін ұрпақтарына бермейді. Олардың ұрпақтарында белгілердің ажырасуынан мозаикалы емес тұлғалар туады. Химерлік жануарлар бірінші ұрпақта ғана өмір сүргенмен олардың практикалық маңызы зор:

1)бірнеше құнды белгілер: өнімділік, ауруға төзімділік т.с.с. бір организмде әдетте кездеспейді, ал химерлерде олар-дың көрінуін күшейтуге болады;

2) әртүрлі жануарлардын эмбриондарын жергілікті түқымның эмбриондарымен біріктіріп малдың жерсінуін (ак-климатизация) тездетуге болады және;

3) эмбриондарды біріктіру жолымен — жақын түрлермен немесе сол түрдің өзімен құнды ауылшаруашылық малдары-ның немесе сиреп бара жатқан тағы жануарлардың генофон-дын "құтқаруға" болады, егер олардың эмбриондары жарақат-тану немесе мутацияның кеселінен, өздігінен көбеюге жарам-сыз болса.

Басқа геномға белгілі бір геномнан алынған немесе жасанды түрде құралған (синтезделген) гендерді экспериментальды тасымалдау -трансгеноз деп аталады. Геномына бөгде гендер енгізілген жануарлар трансгенді делінеді.

Трансгенді жануарларды алу технологиясы қазіргі кезде жақсы жолға қойылган. Клонданған гендерді жұмыртқа клеткаларына немесе алғашқы сатыдағы эмбриондарға енгізудің бірнеше әдісі табылған. Бөгде ген реттеушісіне байланысты әртүрлі тканьдарда қызмет атқарады. Мысалы, егерде тасымалданған генге, оның қайдан алынғанына байланыссыз (бак-териядан, өсімдіктен, адамнан, жануардан) қалыпты жағдайда бауырда қызмет атқаратын тышқан генінің реттеушісін жалғаса, онда көшіріп орнатылған ген трансгенді жануардың бауырында жұмыс атқарады. Демек, кез келген генге реттеуші элсмент тауып, оның, қалау бойынша, қай оргаида жұмыс істейтінін алдын ала "жоспарлауға" болады.

Бұл бағытта болашағы зор әдістер — микроинъекция мен мембрана инженериясы болып табылады. . Дегенмен, олардың бәріндс ДНҚ молекулаларының құрамы (геномы) сол күйінде қалады. Ягни, бастапқы ұрықтанған бір клетка кезіндс оған бөтен ген енгізсе, ол өсіп жетілгсн организмнің барлық клеткаларында болады. Осылай тышқанның ұрықтанған аналық клеткасына адамның самототропин генін енгізу арқылы алып тышқандар алынды. Осылай сәйкес гормонды малдардың да ұрыктанған аналық клеткасына енгізіп, олардың да ірі түрін өсіруге болады.

Р. Хаммер және Г. Брем қызметтестерімен адамның өсу гормонын микроинъекциялау арқылы трансгенді үй қояндарының көжектерін алды. ВИЖдің биотехнология лабораториясында ірі қара малдың өсу гормонын енгізу арқылы трансгенді қоян алынған және ол ген жаңа организмде жұмыс істеген (Л.К. Эрнст және басқалары, 1990).

Трансгенді шошқалар, адамның өсу гормонын инъекциялау негізінде, Р. Хаммердің (1985) және Г. Бремнің (1986) лабораториясында алынды. Бұл шошқалардың кейбіреуінің қанының плазмасында адам гормонының жоғарғы деңгейде екені анықталған.

Ірі қара малмен жұмыс істегенде, пронуклеустарды көру үшін ДНҚ-ға ерекше флуоресценттік бояу қолданады және зиготаларды центрифугалайды. 1987 жылы сүт-етті бағыттағы алғашқы трансгенді бұзау алынды.

Австралияда дүние жүзінде алғаш рет трансгенді қойлар алынды. Мұндай койлар 2-4 жасында осы тұқымға жататын құрбыларынан 1,5 есе ауыр болған. Ғалымдардың айтуы бойынша, жуық арада жүн өсіретін, ауруға қарсы тұратын гендерді де қойларға трансплантациялауға болады .Тревор Скотт (1986).

Трансгенді қойлардың сүтінен қан ұйытатын факторды өндіру биотехнологиясы жете зерттелуде.

Мамандардың айтуынша, трансгенді ауылшаруашылык малдары — XXI ғ. тірі биотехнологиялық фабрикасы болуы керек, олар экологиялык жағынан ең таза, құнды белок препараттарын өндіретін негізгі көз болуы тиіс. Бүгін оның іргетасы қаланып және әдістемелік негіздері жасалынған, тек осы ғылыми-техникалық жетістіктерді ауыл-шаруашылық малдарымен істелетін жұмыстармсн ұштастыру солардың деңгейіне жеткізу керек.


Қолданылатын әдебиеттер:

Негізгі:

1.Б.Бегімқұлов.Молекулалық генетика және биотехнология негіздері.Алматы .1996.

2. Уотсон Дж. Молекулярная биология гена. М.: Мир, 1978,

3. Молекулярная биология: Структура и биосинтез нуклеиновых кислот (под ред. Спирина А.С.). -М.: Высшая школа, 1990.

4. Молекулярная биология: Структура рибосом и биосинтез белка (нод ред. Спирина А.С.)- -М.: Высшая школа, 1996.

5. Степанов В.М.. Молекулярная биология. Структура и функции белков. -М: Высшая школа, 1996.

6. Альбертс Б., Брейм Д., Льюис Дж., Рефф М., Робертс К., Уотсон Дж. Молекулярная биология клетки в 5-и томах. - М.: Мир, 1994.
Қосымша
7. Сингер М., Берг П. Гены и геномы. В 2-х томах. -М.: Мир,1998.

8. Уотсон Дж., Туз Дж., Куру Д. Рекомбинантные ДНК. -М.: Мир, 1986.

9. Льюин Б. Гены. -М.: Мир,1987.

10. Зенгбуш П, Молекулярная и клеточная биология в 3-х томах. -М.:

Мир,1982.

11. Эллиот В., Эллиот Д. Биохимия и молекулярная биология. -М.: НИИ

Биомедицинской химии РАМН, 2000.

12. Овчиников Ю.А., Биорганическая химия. -М.: Просвещение, 1987.

Лазерлі,магнитті дискідегі әдебиет:

1. Д.И.Мамонтов. Открытая биология

2. Льюин.Б. Гены.М.1987
Қазақстан Республикасы

Білім және ғылым министрлігі.


«Сырдария» университеті


Достарыңызбен бөлісу:
1   ...   8   9   10   11   12   13   14   15   16




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет