Математиканың даму тарихы


Қазіргі математика дәуірі



бет4/4
Дата26.05.2023
өлшемі23,48 Kb.
#177759
1   2   3   4
Байланысты:
матемтарих

Қазіргі математика дәуірі.
18 ғасырдың аяғы мен 19 ғасырдың бас кезінен бастап математиканың дамуында бірсыпыра жаңа белгілер мен сипаттар орын алды. Математиканы негіздеудің көптеген мәселелеріне сын көзбен қайта қарау әрекетіне тоқтайық. Ол ең әуелі математиканың жаңа тарауларын қамтиды. Шексіз аз шамалар жайлы бұрынғы анық емес бұлдыр түсініктің орнына шек ұғымын дәл анықтайтын тұжырымдар пайда болды (О. Коши, Б. Больцано, К. Вейерштрасс). Бұл нақты иррационал сандар теориясын жасауды, функциялар ұғымын қайта тексеруді т.б. зерттеулерді қажет етеді. Математикалық анализді негіздеу жөніндегі зерттеулер математиканың жаңа салалары- жиындар теориясы ( неміс математигі Г. Кантор) мен нақты шамалар функциялары теориясының шығуына себепші болды ( француз математиктері К. Жордан, Э. Борель т.б.). Функциялар теориясының тың және жемісті бір саласы функциялардың конструктивтік теориясы П. Л. Чебышев пен оның шәкірттерінің жұмыстарынан басталды
Осымен қарбалас геометрияның да негізгі ұғымдары жан- жақты терең сарапқа салынды. Бұл жөніндегі аса үлкен оқиғалар қатарына бүкіл математиканы түсінуде үлкен бет бұрыс жасаған евклидтік емес геометрия туралы Н. И. Лобачевский мен Я. Больяйдің жұмыстары жатады. Геометрия негіздері туралы осыдан кейінгі зерттеулер геометрия аксиомаларының толық тізімін жасауға әкеп тіреді ( Д. Гильберт), Б. Риман кез келген элементтерден тұратын жаратылыстағы объектілерді қамтитын кеңістіктің жалпы ұғымын берді, мұндай кеңістіктердің қасиеттерін зерттеуге 19 ғасырда дамыған дифференциалдық геометрия әдістерін қолданудың жолдарын көрсетті. 20 ғасыр дифференциалдық- геометриялық көп бейнеліктерді тұтас қарастыру саласында үлкен жетістіктерге қол жетті. Фигуралар мен кеңістіктердің жалпы қасиеттерін зерттеу барысында математиканың жаңа саласы- топология пайда болды ( Б. Риман, А. Пуанкаре).
19 ғасырда алгебрадан алгебралық теңдеулерді радикал арқылы шешу мәселесі айқындалды ( Н. Абель, Э. Галуа). Сонымен қатар алгебралық амалдардың жалпы қасиеттері мұқиет зерттеле бастады. Бұл жағдайда 20 ғасырда алгебраның жаңа бұтағы- абстрактілі немесе жалпы алгебраның жасалуына әкеп соқтырды. Осыған байланысты енгізілген топ, сақина, өріс ұғымдары математика мен жаратылыс танудың әр түрлі салаларында кеңінен қолданыс тапты. Алгебра мен геометрияның шекарасында норвег математигі С. Ли (1873 жылдан бастап) қазіргі физикада мәні зор үздіксіз топтар теориясын жасады.
19 ғасырда математикалық анализдің қолданылу өрісі едәуір кеңейді. Механика мен физиканың жаңа салаларының ( үздіксіз орта механикасы, баллистика, электродинамика, магнетизм теориясы, термодинамика) негізгі аппараты ретінде дифференциалдық теңдеулер теориясы жедел дамыды. 18 ғасырда мұндай түрдегі кейбір теңдеулер ғана шешілген болса, жалпы әдістер тек 19 ғасырда ғана дамытылды, физика мен механиканың есептеріне байланысты қазір де дамытылуда. Аспан механикасының есептерінде дифференциалдық теңдеулердің сапалық теориясы қолданыс тапты ( А. Пуанкаре, А.М. Ляпунов). Дифференциалдық теңдеулермен қатар интегралдық теңдеулер теориясы да дамытыла бастады.
Математикалық анализ бен математикалық физика дамуының геометрия мен алгебрадағы жаңа идеялармен түйіндесуі нәтижесінде математика мен оның қолдануында ерекше маңызды қызмет атқарып отырған математиканың үлкен бір жаңа саласы- функционалдық анализ жасалды. Статистикалық физика мен әр түрлі мәселелерді зерттеуге статистикалық әдістерді кең қолдану әрекеті ықтималдықтар теориясының алдына көптеген жаңа міндеттер қойды. Осы негізде бұл теория 19-20 ғасырларда күшті қарқынмен дамытылды.
19-20 ғасырлар бойы математиканың көне салалары да жаңа идеялармен, нәтижелермен толығып, дамып отырды. Мысалы, сандар теориясына математикалық анализ әдістерін қолдану бұрын элементар әдістер арқылы шешілмей келе жатқан көптеген мәселелерді шешуге мүмкіндік берді ( мысалы, Гольдбах прблемасы).
Теориялық математиканың зерттеулер нәтижесін практика жүзінде қолдану шешілуге тиісті есепке ( мәселеге) сан түрінде жауап алуды талап етеді. Осыған байланысты 19-20 ғасырларда математикадағы сандық әдістер оның дербес бір тармағына айналды. Көп еңбек тілейтін есептеуді қажет ететін мәселелерді шешуді жеңілдету, жеделдету ісі әуелі механика-математикалық машиналар мен аспаптарды, ал 20 ғасырдың 40 жылдарынан бастап тез әрекетті электрондық есептеуіш машиналарды талап етті. 19-20 ғасырларда дамытылған математиканың бір тармағы математикалық логика басқару туралы ғылым- кибернетикада және есептеу техникасында қолданыла бастады. Есептеу техникасының кең қолданылуына байланысты программалау теориясы пайда болды.
19 ғасырдың 2- жартысынан бастап математика тарихын қарастыру жедел қолға алынды. 20 ғасырдың 50 жылдарынан бастап математика ғылымының басқару теориясы, кибернетика, алгебралық геометрия, информация теориясы т.б. көптеген жаңа салалары пайда болды. Математиканың осылай қауырт дамуына жаратылыс тану ғылымдары мен техниканың математика алдына қойып отырған талаптары түрткі болды. Мысалы, өндірістік процесті автоматтандыру басқарудың математикалық теориясының тууына себепкер болды.
Жаңа Вавилон патшалығындағы (VII-VI б.д.д. жылдар) құжаттарда жалгерлік контрактылар, көпес қол хаттары, жүк құжаттары, сонымен бірге сол уақыттағы бухгалтерлік есептер, векселдер кездеседі. Сол дәуірде монеттер болмасада құндылығын салмағымен өлшенетін, олардың рөлін күміс құймалар атқарды. Отты, дөңгелекті және банкті бейнелеуде айтылған үш жаңалық – адамзаттың ұлы жасампаздығы болып саналады деп рас айтылған.
Жаңа Вавилон – патшалығының өзінде, барлық банк операциялары жүргізілген; салымдар қабылдаған, несиелер берген, вексельдердің есебін, чектерді төлеуді жүзеге асырылған, аударымдар арқылы есеп айрысуды жүргізген, яғни нағыз банктер, “іскер үйлер” өмір сүрген.
Шамамен біздің дәуірімізге дейінгі 1780 жылдары жазылған патша Хаммурапидің (1792-1750 ж. б.д.д.) кодексінде, мемлекет, заң актілерінің көмегімен, ескі вавилон патшалығындағы өзбетімен, жеке өндірушілерді таратуды тоқтатуға тырысқан.
Хаммурапи кодексінің негізгі мазмұны – “күштілер әлсіздерді ығыстырмас үшін” жағдай жасау болып табылады. Мәселен, патша әскерлерімен және басқада шынайы берілген вавилондықтардың қарыздар үшін жер иеленуші бөлімдерін (неделдерін) сатуға, оқшаулауға тыйым салынған; борыштың сомасына қарамастан олардың арасында құлдық борышқа жол берілмеген, растовщиктік қанауға (20 % - ақшалай, 33% натуралды ссуданы) шектеу қойлған. Кодекс, жеке тұлғаны құқықтық қорғаумен қатар, құл иеленушілердің құлдарға жеке меншік құқын, патшаға қызмет етушілердің мүдделерін қорғауды кіргізді. Патша Хаммурапи кодексі, Вавилондағы тауарлы – ақша қатынастарын дамытудағы құқықтық нормалар жүйесінің көмегімен, ел экономикасын басқарудың алғашқы мысалдарының бірі еді.

Достарыңызбен бөлісу:
1   2   3   4




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет