Issn 2072-0297 Молодой учёный Международный научный журнал Выходит еженедельно №3 (137) / 2017 р е д а к ц и о н н а я к о л л е г и я : Главный редактор



Pdf көрінісі
бет13/129
Дата23.11.2022
өлшемі9,13 Mb.
#159594
1   ...   9   10   11   12   13   14   15   16   ...   129
Байланысты:
moluch 137 ch1

Contemplated stations
1. Samara
8. Sizran
15. Bazarnya
22. Chaadaevka
28. Potma
2. Novokuibyshevsk
9. Kuzovatovo
16. Inza
23. Kadoshkino
29. Zubova Polyana
3. Bezenchuk 
10. Novospasskoe
17. Kuznetsk
24. Ruzaevka
30. Belinskaya
4. Chapaevsk
11. Barish
18. Nochka
25. Penza
31. Pachelma
5. Obsharovki
12. Klyuchiki
19. Sura
26. Kovylkino
32. Sasovo
6. Ryazan
13. Bashmakovo
20. Sosedka
27. Vernadovka
33. Morshansk
7. Verda
14. Ryazhsk
21. Moscow
Green route — train № 55, yellow — № 131U, orange — № 121E.
Fig. 1.
 Graph train routes


“Young Scientist”

#3 (137)

January 2017
5
Mathematics
Top number 1 (Samara) must be connected by edges with all (Table 2).
Table 2.
 Weights of edges from the first top
1–2: 1130
1–8: 1280
1–18: 1240
1–26: 2510
1–2: 1220
1–9: 1220
1–19: 1630
1–27: 1860
1–2: 920
1–10: 1210
1–20: 1370
1–28: 1820
1–3: 1130
1–11: 1170
1–20: 1590
1–29: 1910
1–4: 1090
1–12: 1000
1–21: 1420
1–30: 2020
1–4: 1140
1–12: 1220
1–22: 1440
1–31: 2140
1–4: 890
1–13: 1450
1–22: 2030
1–32: 2170
1–5: 900
1–14: 1170
1–23: 1690
1–33: 3250
1–6: 930
1–15: 1120
1–24: 1970
1–33: 2800
1–6: 1000
1–16: 1440
1–25: 1490
1–33: 2950
1–6: 620
1–17: 1340
1–26: 2120
1–7: 930
1–18: 1650
1–26: 2030
And draw edges from all the vertices to the top № 33 (Moscow) (Table 3).
Table 3. 
Weights of edges in the last vertex
1–33: 3250
6–33: 2700
16–33: 2400
25–33: 1310
1–33: 2800
6–33: 2770
17–33: 1430
26–33: 890
1–33: 2950
7–33: 2700
18–33: 1810
26–33: 860
2–33: 3250
8–33: 2770
18–33: 1900
26–33: 1200
2–33: 2730
9–33: 2800
19–33: 2400
27–33: 1910
2–33: 2950
10–33: 2590
20–33: 1810
28–33: 1910
3–33: 3250
11–33: 2230
20–33: 1420
29–33: 1660
4–33: 3250
12–33: 2100
21–33: 1520
30–33: 1730
4–33: 2710
12–33: 1950
22–33: 1360
31–33: 1520
4–33: 2950
13–33: 2590
22–33: 1400
32–33: 1770
5–33: 2730
14–33: 2010
23–33: 2100
6–33: 3250
15–33: 3100
24–33: 1840
All data is entered. Bellman — Ford algorithm is used as a way of finding a solution: the search algorithm of finding the 
shortest path in a weighted graph [2]. It finds the shortest path from one vertex to all others. Software implementation is made 
independently. The pseudo-code of the algorithm is as follows:
for v 

V
do d [v] 
← 

d [s] 

0
for i 

1 to |V| — 1
do for (u, v) 

E
if d [v] > d [u] + w(u, v) then d [v] 

d [u]+w(u, v)
return d; [3]
By applying the algorithm to a graph problem, a solution is that the cheapest trip will cost 2770 rubles (Figure 2). It should 
be noted that straight tickets from 1 to 33 vertex cost 3250, 2800 and 2950 respectively.


«Молодой учёный»
.
№ 3 (137)
 .
Январь 2017 г.
6
Математика
Fig. 2. 
Search software solutions
The route of the resulting solution will be as follows:
Fig. 3. 
The resulting route
Thus, you need get from 1 to 21 top, there you must change trains and get to the fi nal top.
To summarize, it must be said that it was clearly considered the application of graph theory on practice. In particular, it was 
found the most economical way to get from Samara to Moscow by the train. Solution process fully demonstrates the eff ective-
ness of the view model as a graph and the practical application of the algorithm of fi nding the shortest paths, specifi cally the 


“Young Scientist”

#3 (137)

January 2017
7
Mathematics
Bellman-Ford algorithm. Saving turned a relatively small, but with the increase in the number of people who need to get from 
one point to another, its value increases and becomes noticeable, which is important for large companies, as it allows them to 
reduce costs and expenses. In the future, the problem will be discussed with respect to transportation. It is clear that to carry 
one kilogram load savings would be small, but with the weight increasing for tens or hundreds of tons, rather large values can 
be obtained that companies can save by applying the only representation of the model in the form of a graph and elementary 
shortest-path finding algorithm.
References:
1. The site «Russian Railways» — www.rzd.ru access mode.
2. Basaker R., T. Saaty. Finite graphs and networks. — M.: Nauka, 1974. 368 s.
3. Belov V. V., Vorobyov E. M., V. E. Shatalov. Theory grafov. — M., 1976. 392 s.


«Молодой учёный»
.
№ 3 (137)
 .
Январь 2017 г.
8


Достарыңызбен бөлісу:
1   ...   9   10   11   12   13   14   15   16   ...   129




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет