Мазмұны бойынша ең алдымен есептерді оның физикалық материалына байланысты ажыратады. Мысалы: механика, молекулалық физика, электродинамика т. б. Есептің бұлай ажыратылуы шартты нәрсе, көбінесе есептер физиканың бірнеше бөлімдерін қамтиды. Техника, өндірістік, ауылшаруашылық, транспорт және байланыс жайындағы материалдарды қамтитын есептерді политехникалық мазмұнды есептер деп атайды. Политехникалық есептердің мазмұны меңгерілетін бағдарлама материалымен тығыз байланысты болуы керек. Бірқатар есептер тарихи сипаттағы мәліметтерден: физикалық тәжірибелерден, ғылыми ашылулардан (жаңалықтардан), тіпті тарихи ертегілерден тұрады. Ондай есептерді тарихи мазмұндағы есептер деп атайды. Сұрақтарды зерттеу әдісіне және сипатына байланысты есептерді сапалық және есептеу (сандық) есептері деп ажыратады. Сапалық есептер деп есепті шығару барысыда физикалық шамалардың арасында тек сапалық тәуелділігі ғана тағайындалатын есептерді айтады. Заң бойынша мұндай есептерді шығару барысында есептеулер жүргізбейді. Кейде есептің мұндай түрін әдістемелік әдебиеттерде сұрақ –есептер, логикалық есептер, сапалық сұрақтар деп атайды. Сандық есептер деп есепті шығару барысында физикалық шаманың арасындағы сандық тәуелділік тағайындалатын есептерді айтады. Шығарылу тәсілдеріне байланысты есептерді ауызша, экспериментті, есептеу және графикалық есептер деп ажыратады. Бұлай ажыратудың өзі шартты түрде ғана, өйткені есепті шығару кезінде көбінесе бірнеше тәсілді қолданады. Сапалық есептерді әдетте меңгерілген материалды бекіту құралы ретінде қолданады. Мектеп физика курсының көптеген тақырыптары үшін сапалық есептер негізгі бөлім болып табылады. Есептің мұндай түрі қарастырылған мәселенің физикалық мәнін қалай меңгергенін қысқа уақытта анықтауға мүмкіндік береді. Сапалық есептерді логикалық ой қорыту негізінде шешеді. Сапалық есептерді шығаруда талдау мен салыстыру (анализ және синтез) өзара тығыз байланыста болады, оларды кейде бір-бірінен ажырату мүмкін емес. Сапалық есептерді шығарудың схемасы мынадай: Есептердің шартын оқу, оның шартындағы барлық терминдерді анықтау (мағынасын түсіну); Есептің шартын талдау, физикалық құбылысты анықтау, түсіну; Талдаудың аналитика-синтетикалық тізбегін құру; Алынған жауапты оның физикалық мағынасымен түсіндіру. Сапалық есептерді шығару әдістеріне қарай оларды екі негізгі топқа ажыратамыз: 1.Қарапайым сапалық есептер: оларды шешу бір физикалық заңдылыққа негізделеді, мұнда ой-қорыту тізбегі қарапайым. 2.Күрделі сапалық есептер: бұл бірнеше қарапайым есептердің комбинациясы немесе жиынтығы болып келеді. Оларды шешуде біршама күрделі ой-қорыту тізбегін құруға тура келеді және бірнеше физикалық заңдылықтар талданады. Мысалы сұрақ есептерін қарастырайық: Бірінші мысал: Неліктен сүрініп кеткен адам алға қарай құлайды? Бұл есептегі басты мәселе инерция құбылысы болып табылады. Сондықтан бұл есепті шешуде ой қорыту тізбегі инерция құбылысын сипаттайтын физикалық заң негізінде құрылады. Қарастырылған жағдайда бұл - Ньютонның бірінші - иерция заңы. Есепті шығару барысында оқушылар заңның негізгі тұжырымдамасын еске түсіреді. Инерция заңын есепке қолдана отырып, мынадай қорытынды жасайды: сүрінген кезде адамның алға қарай құлау себебі қандай да бір кедергінің салдарынан сүрінген аяғы тоқтайды, ал дененің басқа бөлігі инерция бойынша алға қарай қозғалуын жалғастырады. Сұрақ есептерде физикалық формулалармен өрнектелетін әртүрлі тәуелділіктер де қолданылуы мүмкін. Екінші мысал: Қандай тәсілмен адам еденге түсіретін қысымын екі есе арттыруға болады? Алдымен физикалық мәнін талдайық. Есепте қысым жайында сұралып тұр. Қысым – қысым күшінің модулінің ауданға қатынасымен анықталады. Р=F/S. Ендеше қысым қысым күші сияқты ауданға да тәуелді. Сондықтан, біріншіден дәл сол ауданға түсіретін қысым күшін екі есе арттырып қысымды екі есе арттыру. Мұны мынадай тәсілмен жүзеге асыруға болады. Адам қолына өз салмағына тең қосымша жүк алып тұруы керек. Екіншіден, ауданды екі есе кемітіп қысымды арттыруға болады. Ол үшін адамға бір аяғымен тұру жеткілікті және өз тепе-теңдігін бұзбас үшін өз қалпын сәл өзгертсе жеткілікті. Сондай-ақ сапалық есептер график түрінде де берілуі мүмкін. Мұнда зерттеу объектісі физикалық шамалардың графиктік тәуелділігі болып табылады. Кейбір жағдайларда есептің шарты гафикпен берілуі, ал кейбірінде есептің шарты бойынша график тұрғызылуы мүмкін. Есептеу есептері – есептің нәтижесі математикалық амалдардың және есептеулердің көмегімен алынатын есептер. Ондай есептерді әртүрлі жолдармен шығаруға болады. Есептерді шығаруда қолданылатын математикалық амалдарға байланысты алгебралық, геометриялық, тригонометриялық және графиктік тәсілдерге ажыратады. Физикалық есептерді алгебралық тәілмен шығаруды қарастырайық. Физика есептерін бұл тәсілмен шығаруда формулаларды пайдаланады, оларды құрады және алгебралық теңдеулерді шешеді. Алгебралық тәсілді қолданудың қарапайым жағдайы – есепті дайын формула бойынша шығару. Күрделірек есептерді шығаруда бірнеше формулаларды немесе теңдеулер жүйесін қолданып шығарады. Қарапайым есепті алгебралық әдіспен шығарудың мысалын қарастырайық (дайын формула бойынша). Мысалы: Ұзындығы 1 км көлденең қимасының ауданы 10 мыс өткізгіштің кедергісін анықта.
Достарыңызбен бөлісу: |