Воспользуемся свойствами сложного отношения точек и прямых для доказательства еще одной теоремы.
Рассмотрим центральную проекцию прямой АВ на прямую А'В, с центром в точке S. Точка В остается на месте, точки А, D и С переходят в точки А', D' и С'. При этом сложные отношения (АВ,СD) и (А'В,С'D') равны между собой. Проведем через точку В произвольную прямую, пересекающую прямые SA и SC в точках М и N.
Прямые МА', МВ, МС', MD' образуют четверку с тем же сложным отношением, что и точки А', В, С', D'. (МА' МВ, МС' MD') = (А'В,С'D') = (АВ,СD). Пересечем прямые этого пучка прямой АС' и рассмотрим перспективное отображение пучка с вершиной М на пучок с вершиной N и осью перспективы АС'.
Прямая МА' перейдет в прямую NA, прямая МС' – в NС, прямая МВ – сама в себя. Образом прямой MD' будет прямая пучка с вершиной N, проходящая через точку К пересечения оси перспективы АС' и прямой MD'. Сложное отношение прямых сохраняется. (NA NB, NC NK) = (МА' МВ, МС' MD').
Прямые NA, NB, NC, NK пересекают прямую АВ в точках А, В, С, D1, и сложное отношение точек пересечения равно сложному отношению прямых пучка.
(АВ,СD1) = (NA NB, NC NK) = (МА' МВ, МС' MD') = (А'В,С'D') = (АВ,СD)
Это значит, что точка D совпадает с точкой D1. Убирая с чертежа некоторые точки и прямые и вводя новые обозначения, получаем теорему Паппа.
Достарыңызбен бөлісу: |