Қосу теоремасы
Ықтималдықтарды есептеу сынаудың жалпы саны мен оқиғаның пайда болуына қолайлы нәтижелер санын анықтауға келіп тіреледі. Бұларды тікелей есептеу көп жағдайда үлкен қиындыққа ұшыратады. Оның үстіне, практикада кездесетін оқиғалар күрделі болып келеді де, олардың ықтималдығын табу үшін, ол оқиғаларды бірнеше қарапайым оқиғалардың қосындысы не көбейтіндісі түрінді жазып, солардың ықтималдықтары арқылы күрделі оқиға ықтималдығын анықтайды. Ол үшін негізінен ықтималдықтарды қосу және көбейту теоремаларын пайдаланады.
Қосу теоремасы. Үйлесімсіз А және В оқиғаларының қосындысының ықтималдығы олардың ықтималдықтардың қосындысына тең, яғни
(1)
Д/уі: Теореманы дәлелдеу үшін (1) теңдіктегі үш ықтималдықты есептеп, ол мәндерді (1) теңдікке қойып, оның дұрыстығына көз жеткізу жеткілікті.
Қосудың кеңейтілген теоремасы
Егер А1, А2, ...,Ап қос-қостан үйлесімсіз оқиғалар болса, онда бұлардың қосындысының ықтималдығы олардың әрқайсысының ықтималдықтарының қосындысына тең болады, яғни
(2)
1-салдар. Оқиғалардың толық тобын құрайтын қос-қостан үйлесімсіз сынау нәтижелері ықтималдықтарының қосындысы бірге тең.
2-салдар. Қарама-қарсы екі оқиға ықтималдықтарының қосындысы бірге тең, яғни
.
Достарыңызбен бөлісу: |