Проблема излучения абсолютно черного тела. Формула Планка



бет1/3
Дата07.02.2022
өлшемі18,69 Kb.
#95245
түріЗакон
  1   2   3
Байланысты:
Проблема излучения абсолютно черного тела


Проблема излучения абсолютно черного тела.
Формула Планка

Проблема излучения абсолютно черного тела состояла в том, чтобы теоретически получить зависимость φ(λ,Т) - спектральную плотность энергетической светимости абсолютно черного тела.
Казалось, что ситуация ясна: при заданной температуре Т молекулы вещества излучающей полости имеют максвелловское распределение по скоростям и излучают электромагнитные волны в соответствии с законами классической электродинамики. Излучение находится в термодинамическом равновесии с веществом, значит для нахождения спектральной плотности энергии излучения u(λ,T) и связанной с ней функции φ(λ,Т) можно использовать законы термодинамики и классической статистики.
Однако, все попытки теоретиков получить на основе классической физики закон излучения абсолютно черного тела потерпели неудачу.
Частичный вклад в решение этой проблемы внесли Густав Кирхгоф, Вильгельм Вин, Иозеф Стефан, Людвиг Больцман, Джон Уильям Релей, Джеймс Хонвуд Джинс.
Проблема излучения абсолютно черного тела была решена Максом Планком. Для этого ему пришлось отказаться от классических представлений и сделать предположение о том, что заряд, совершающий колебания с частотой v, может получать или отдавать энергию порциями, или квантами.
Величина кванта энергии в соответствии с (1.2) и (1.4):

где h - постоянная Планка; v - частота колебаний электромагнитной волны, излученной колеблющемся зарядом; ω = 2πv - круговая частота.


На основе представления о квантах энергии М. Планк, используя методы статистической термодинамики, получил выражение для функции u(ω,Т), дающей распределение плотности энергии в спектре излучения абсолютного черного тела:

Вывод этой формулы будет дан в лекции N 12, § 3 после того, как мы познакомимся с основами квантовой статистики.


Для перехода к спектральной плотности энергетической светимости f(ω,Т) запишем вторую формулу (1.19):

Используя это соотношение и формулу Планка (2.1) для u(ω,T), получим, что:

Это и есть формула Планка для спектральной плотности энергетической светимости f(ω,T).
Теперь мы получим формулу Планка для φ(λ,Т). Как мы знаем из (1.18), в случае абсолютно черного тела f(ω,T) = rω, а φ(λ,Т) = rλ.
Связь между rλ и rω дает формула (1.12), применяя ее мы получим:

Здесь мы аргумент ω функции f(ω,Т) выразили через длину волны λ. Подставляя сюда формулу Планка для f(ω,Т) из (2.2), получим формулу Планка для φ(λ,Т) - спектральной плотности энергетической светимости в зависимости от длины волны λ:

График этой функции хорошо совпадает с экспериментальными графиками φ(λ,Т) для всех длин волн и температур.
Это и означает, что проблем излучения абсолютно черного тела решена.



Достарыңызбен бөлісу:
  1   2   3




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет