2. Производство фосфорной кислоты экстракционным методом В технологии под фосфорной кислотой подразумевают ортофосфорную кислоту H3PO4 (P2O5·3H2O) с содержанием в ней 72,4% P2O5. Ортофосфорная кислота представляет собой бесцветные кристаллы с температурой плавления 42,4ºС, гигроскопичные и расплывающиеся на воздухе. В переохлажденном состоянии – это густая маслянистая жидкость плотностью 1,88 т/м3. Смешивается с водой во всех отношениях. При нагревании подвергается дегидратации с образованием полифосфорных кислот различного состава (P2O5 · nH2O), где n< 3; пирофосфорной H4P2O7(P2O5·2H2O), триполифосфорной H5P3O10(3P2O5·5H2O) и т.д. Техническая полифосфорная кислота, содержащая 70 – 80% P2O5 и известная под названием суперфосфатной кислоты, имеет плотность 1,8 – 2,0 т/м3 и температуру затвердевания 3 - 8ºС. Высокое содержание P2O5 и способность образовывать растворимые комплексные соединения позволяет использовать суперфосфорную кислоту для получения высококонцентрированных жидких и твердых фосфорных удобрений.
Физико-химические основы процесса.Экстракционный метод производства фосфорной кислоты основан на реакции разложения природных фосфатов серной кислотой. Процесс состоит из двух стадий: разложения фосфатов и фильтрования образовавшейся фосфорной кислоты и промывки сульфата кальция водой.
Сернокислотное разложение фосфата кальция представляет гетерогенный необратимый процесс, протекающий в системе «твердое тело – жидкость» и описываемый уравнением
Ca5(PO4)3F + 5H2SO4 + nH3PO4 + 5mH2O =
= (n + 3)H3PO4 + 5CaSO4 · mH2O + HF.
Для удобства записи и упрощения расчетов формула двойной соли фторапатита 3Ca3(PO4)2 · CaF2 записывается в виде Ca5(PO4)3F.
Часть образовавшейся фосфорной кислоты возвращается в процесс. Фактически фосфат разлагается смесью серной и фосфорной кислот. В зависимости от концентрации фосфорной кислоты в системе и температуры образующийся сульфат кальция может осаждаться в виде ангидрита (m = 0), полугидрата (m = 0,5) и дигидрата (m = 2). В соответствии с этим различают три варианта экстракционного метода производства фосфорной кислоты: ангидритный, полугидратный и дигидратный. В табл. 3 приведены условия разложения фторапатита для каждого из вариантов этого процесса.
Температурный режим зависит от варианта экстракционного процесса. В дигидратном методе гидратированный сульфат кальция осаждается в форме дигидрата при 70 – 80ºС и концентрации кислоты в реакционной смеси 20 – 32% P2O5, в полугидратном методе – в форме полугидрата при 90 -100ºС и концентрации кислоты 35 – 42%. На рисунке 3 показана зависимость формы кристаллизации сульфата кальция от температуры и концентрации фосфорной кислоты (P2O5). В области ниже кривой 2 сульфат кальция кристаллизируется в виде дигидрата, выше кривой 1 - в виде ангидрита, в области между кривыми 1 и 2 - в виде полугидрата.
Рисунок 3 - Влияние температуры и концентрации кислоты на форму кристаллизации сульфата кальция
Таблица 3 - Условия разложения фторапатита
Тип процесса
Температура ºС
Концентрация P2O5 в жидкой фазе, %
Теплота реакции, кДж/моль
Дигидратный
70 – 80
25 – 32
384,4
Полугидратный
95 – 100
38 – 48
371,0
Выделяющийся при кислотном разложении фторапатита фтористый водород частично поступает в атмосферу, а частично вступает в реакцию с кремниевой кислотой, образующейся при разложении примесей, содержащихся в фосфатном сырье:
H2SiO3 + 6HF = H2SiF6 +3H2O.
Образовавшаяся кремнефтористоводородная кислота частично разлагается, и в газовую фазу выделяется тетрафторсилан
2H2SiF6 + H2SiO3 = 3SiF4 + 3H2O.
Одновременно протекает реакция взаимодействия тетрафторсилана с фтористым водородом с образованием кремнефтористоводородной кислоты
SiF4+ 6HF = H2SiF6.
Выделение фтористых соединений в газовую фазу возрастает с повышением температуры.
Скорость кислотного разложения фторапатита возрастает с повышением температуры, степени измельчения сырья и интенсивности перемешивания реагентов.
Рисунок 4 - Зависимость степени разложения фосфата от концентрации кислоты
Существенное влияние на скорость процесса кислотного разложения фосфатов оказывает концентрация серной кислоты. От нее зависит не только скорость химической реакции, но и структура кристаллического сульфата кальция, осаждающегося на поверхности частиц фосфата и скорость диффузии кислоты к твердой фазе.
При низкой концентрации кислоты образуются крупные кристаллы, не препятствующие диффузии. При высокой концентрации кислоты в результате пресыщения жидкой фазы сульфатом кальция выпадают мелкие кристаллы, препятствующие диффузии кислоты и замедляющие скорость процесса. Поэтому зависимость скорости и степени разложения от начальной концентрации серной кислоты имеет сложный характер (рис.12.4).
Скорость и степень разложения фосфата кислотной низкой концентрации (максимум 1) достаточно высоки. Однако большое количество воды, вводимой с кислотой, затрудняет кристаллизацию продукта. Максимум 2, также отвечающий высокой скорости разложения, достигается при концентрации кислоты в реакционной системе 5 – 10%, что соответствует концентрации исходной кислоты около 60% при соотношении жидкой и твердой фаз 3:1, которое обеспечивает необходимую подвижность пульпы.
Высокая степень разложения фосфатов, равная 0,99 дол.ед., достигается всего за 1 – 1,5 часа. Практически процесс экстракции продолжается 4 – 8 часов. Это необходимо для образования крупных кристаллов сульфата кальция, которые легко фильтруются и промываются для извлечения фосфорной кислоты небольшим количеством воды. Образованию крупных кристаллов способствует также перемешивание системы, незначительный избыток серной кислоты, снижающий степень пресыщения раствора и постоянство температуры процесса.