U R J Ro U R U R Jэ Ro UR
(Еэ=Uxx)
Генератор напряжения (EЭ, R0) может быть заменен эквивалентным генератором тока (JЭ, G0) (рис. 27б) исходя из условия эквивалентности:.
Параметры эквивалентного генератора тока могут быть определены (рассчитаны или измерены) независимым путем, как Jэ=Iкзаb , G0=Gвхаb, где Iкзаb ток короткого замыкания в выделенной ветви.
Метод расчета тока в выделенной ветви сложной схемы, основанный на применении теоремы об эквивалентном генераторе, получил название метода эквивалентного генератора напряжения (тока) или метода холостого хода и короткого замыкания (х.х. и к.з.). Последовательность (алгоритм) расчета выглядит так.
1) Удаляют из сложной схемы выделенную ветвь, выполняют расчет оставшейся части сложной схемы любым методом и определяют напряжение холостого хода между точками подключения выделенной ветви.
2)Удаляют из сложной схемы выделенную ветвь, закорачивают в схеме точки подключения выделенной ветви, выполняют расчет оставшейся части сложной схемы любым методом и определяют ток короткого замыкания Iкзаb в закороченном участке между точками подключения выделенной ветви.
3)Удаляют из схемы выделенную ветвь, в оставшейся части схемы удаляют все источники (источники ЭДС E закорачивают, а ветви с источниками тока J удаляют из схемы), методом преобразования выполняют свертку пассивной схемы относительно точек подключения выделенной ветви и таким образом определяют Rвхаb.
4) Составляют одну из эквивалентных схем замещения с генератором напряжения (рис. 27а) или с генератором тока (рис. 27б).
5) Выполняют расчет эквивалентной схемы (рис. 27а или рис. 27б) и находят искомый ток, например:
по закону Ома для схемы рис. 27а;
по методу двух узлов для схемы рис. 27б.
Так как между тремя параметрами эквивалентного генератора справедливо соотношение , то для их определения достаточно рассчитать любые два из трех параметров согласно п.п. 1), 2), 3), а третий параметр определить из приведенного соотношения.
Электрические измерения и приборы.
Тема урока: Меры, измерительные приборы и методы измерения
Урок
Переменным называется ток i(t) [напряжение u(t)], периодически изменяющийся во времени по произвольному закону. В электроэнергетике понятие ’’переменный’’ употребляют в более узком смысле, а именно под переменным понимают ток (напряжение), изменяющийся во времени по синусоидальному закону
i(t)=Im sin(t+i),
u(t)=Umsin(t+u)
Графические диаграммы этих функций имеют вид рис. 32:
Время, за которое происходит одно полное колебание, называется периодом и обозначается буквой Т. Число полных колебаний (периодов) в единицу времени называется частотой f:
Гц
Из математики известно, что синусоидальная функция времени может быть описана вращающимся вектором со скоростью вращения . В технике эта величина получила название угловой частоты
= 2f = с-1 или радс
В выражениях функций i(t) и u(t) приняты обозначения:
u(t), i(t) или u, i мгновенные значения функций, т.е. их значения в произвольно выбранный момент времени;
Um, Im амплитудные (максимальные) значения функций;
(t+)фаза, определяющая момент времени;
u, i– начальные фазы функций, определяющие их значения в момент t=0, зависят от выбора начала отсчета времени;
= ui– угол сдвига фаз (разность начальных фаз) между напряжением и током, не зависит от выбора начала отсчета времени.
Синусоидальная форма для функций токов и напряжений в электроэнергетике утверждена в качестве стандарта и является одним из показателей качества электроэнергии как товара.
Из физических законов следует, что при протекании синусоидального тока i=Imsint через любой линейный элемент электрической цепи напряжение на его зажимах также будет синусоидальным, и наоборот, при синусоидальном напряжении ток также будет иметь синусоидальную форму.
Из закона Ома для резистора R следует
uR = Ri=RImsint=Umsint.
Из закона электромагнитной индукции для катушки L следует
uL = e = = LImcost = Umsin(t+90).
Из закона сохранения заряда для конденсатора С следует
uC = = Umsin(t90).
Таким образом, в цепи переменного тока любой сложности напряжения и токи на всех участках будут изменяться по синусоидальному закону при условии, что источники энергии обеспечивают синусоидальную форму напряжений на их выводах.
Диапазон частот токов и напряжений, применяемых в различных отраслях современной техники, очень велик от 10-1 Гц до 109 Гц. В электроэнергетике в качестве стандарта частоты в Европе принята частота f=50 Гц (=2f = 314 c-1), а в США и Канаде f = 60 Гц ( = 377 с-1), в других странах возможны оба варианта или один из них.
Частота f = 50 Гц принята в качестве стандарта исторически на заре развития электроэнергетики и уже не соответствует сегодняшнему уровню развития техники. Оптимальной на сегодня была бы частота в диапазоне 150 – 200 Гц. Однако переход на оптимальную частоту связан с большими техническими сложностями и в ближайшее время не может быть осуществлен.
Среднее значение Fср произвольной функции времени f(t) за интервал времени Т определяется по формуле
Численно среднее значение Fср равно высоте прямоугольника, равновеликого по площади фигуре, ограниченной кривой f(t), осью t и пределами интегрирования 0 – Т (рис. 33).
Для синусоидальной функции среднее значение за полный период Т (или за целое число полных периодов) равно нулю, так как площади положительной и отрицательной полуволн этой функции равны. Для переменного синусоидального тока (напряжения) среднее значение определяют за половину периода (Т/2) между двумя нулевыми значениями (рис. 34)
Iср=Imsint dt = Im
Аналогично получим для напряжения:
Достарыңызбен бөлісу: |