Замена параллельных ветвей эквивалентной ветвью (рис. 12) осуществляется согласно теореме об эквивалентном генераторе.
Напряжение холостого хода Uxxab= EЭ определяется по методу двух узлов:
.
Эквивалентное входное сопротивление находится методом свертки схемы:
.
5) Перенос источника ЭДС через узел схемы: источник ЭДС Е можно перенести через узел во все ветви, отходящие от узла (рис. 13а, б.):
Электрические цепи постоянного тока.
Тема урока: Электротехнические устройства постоянного тока.
Урок
Теоретическая база метода: 1-й и 2-й законы Кирхгофа.
1-й закон Кирхгофа: алгебраическая сумма токов ветвей в узле схемы равна нулю ().
2-й закон Кирхгофа: алгебраическая сумма падений напряжений в произвольном контуре схемы равна алгебраической сумме ЭДС ().
Пусть требуется выполнить расчет режима в заданной сложной схеме (рис. 16) и определить токи в ветвях, напряжения на отдельных элементах, мощности источников и приемников энергии. Задана схема цепи и параметры ее отдельных элементов (E1, E2, J1, J1, J2, R1, R2, R3, R4, R5).
Анализируем структуру схемы: схема содержит n=3 (0, 1, 2) узлов и m=5 ветвей с неопределенными токами. В ветвях с источниками тока J токи определены источниками. Общее число уравнений должно быть равно числу определяемых токов “m”.
Последовательность (алгоритм) расчета.
1) Задаются (произвольно) положительными направлениями токов в ветвях схемы (I1, I2, I3, I4, I5).
2) Составляется (n1) уравнений для узлов по первому закону Кирхгофа. Уравнение для последнего n-го узла является зависимым (оно может быть получено путем сложения первых (n1) уравнений).
3) Недостающие m(n1) уравнений составляются по 2-му закону Кирхгофа. Правило выбора контуров для составления уравнений: каждый последующий контур должен включать в себя хотя бы одну новую ветвь, не охваченную предыдущими уравнениями. Число независимых контуров для схемы любой сложности не может быть больше числа m(n1).
Ниже приведена система уравнений Кирхгофа для схемы рис. 16, состоящая из m=5 уравнений, из которых n1=2 составлены для узлов 1 и 2 по 1-му закону Кирхгофа и m(n1)=3 составлены для контуров К1, К2, К3 по 2-му закону Кирхгофа:
узел 1,
узел 2,
контур К1,
контур К2,
контур К3.
4) Система уравнений приводится к матричной форме, составляются матрицы коэффициентов:
;
5) Система уравнений решается на ЭВМ по стандартной программе для решения линейных алгебраических уравнений с вещественными коэффициентами, в результате чего определяются неизвестные токи I1, I2, I3, I4, I5. Отрицательные результаты, получаемые для некоторых токов, означают, что их действительные (физические) направления не соответствуют направлениям, принятым в начале расчета.
6) Определяются напряжения на отдельных элементах схемы (), мощности источников ЭДС (), источников тока () и приемников (). При этом мощности приемников энергии всегда положительны, а мощности источников энергии могут быть отрицательными, если сомножители в произведениях и не совпадают по направлению.
Теоретическая база метода контурных токов – 2-ой закон Кирхгофа в сочетании с принципом наложения. Предполагают, что в каждом элементарном контуре-ячейке схемы протекает «свой» контурный ток Ik, а действительные токи ветвей получаются по принципу наложения контурных токов как их алгебраические суммы. В качестве неизвестных величин, подлежащих определению, в данном методе выступают контурные токи. Общее число неизвестных составляет m(n1).
Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 17. Параметры отдельных элементов схемы заданы.
Последовательность (алгоритм) расчета.
1) Задаются (произвольно) положительными направлениями контурных токов в контурах-ячейках схемы(Iк1, Iк2, Iк3 ). Контуры-ячейки следует выбирать так, чтобы они не включали в себя ветви с источниками тока. Ветви с источниками тока J образуют свои контуры с заданными токами (J1, J2).
2) Составляются m(n1) уравнений по 2-му закону Кирхгофа для выбранных контуровячеек с контурными токами Iк1, Iк2, Iк3. В уравнениях учитываются падения напряжений как от собственного контурного тока, так и от смежных контурных токов.
Ниже приведена система контурных уравнений для схемы рис. 17:
В обобщенной форме система контурных уравнений имеет вид:
Здесь введены следующие обозначения:
R11= R1 +R4; R22 = R3 +R4 +R5 и т. д. – собственные сопротивления контуров, равные сумме сопротивлений всех элементов контура;
R12 = R21 = R4 ; R23 = R32 = R5 и т. д. – взаимные сопротивления между двумя смежными контурами, они положительны – если контурные токи в ветви совпадают, и отрицательны – если контурные токи в ветви направлены встречно, и всегда отрицательны – если все контурные токи ориентированы одинаково (например, по часовой стрелке), равны нулю – если контуры не имеют общей ветви, например, R13 = R31 = 0 ;
E11 = E1 + J1R4, E22 = E2, E33 = E3 +J2R3 и т. д. – контурные ЭДС, равные алгебраической сумме слагаемых Enn = E + JR от всех источников контура.
Система контурных уравнений в матричной форме:
или в сокращенно ,
где матрица контурных сопротивлений, матрица контурных токов, матрица контурных ЭДС.
3) Система контурных уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами (SU1), в результате чего определяются неизвестные контурные токи Iк1, Iк2, Iк3.
4) Выбираются положительные направления токов в ветвях исходной схемы (рис. 1) (I1, I2, I3, I4, I5). Токи ветвей определяются по принципу наложения как алгебраические суммы контурных токов, протекающих в данной ветви.
I1 = Iк1; I2 = Iк3; I3 = Iк2 – J2; I4 = Iк1 – Ik2+ J1; I5 = Iк2Ik3 .
5) При необходимости определяются напряжения на отдельных элементах (Uk= IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и мощности приемников энергии (Pk = Ik2Rk).
Практическая работа № 2 «Снятие вольтамперных характеристик резистора с помощью амперметра и вольтметра».
Урок
Тема урока: Индуктивный элемент в цепи постоянного тока.
Урок
Теоретическая база метода узловых потенциалов – 1-ый закон Кирхгофа в сочетании с потенциальными уравнениями ветвей. В этом методе потенциал одного из узлов схемы принимают равным нулю, а потенциалы остальных (n1) узлов считают неизвестными, подлежащими определению. Общее число неизвестных составляет (n1).
Рассмотрим обобщенную ветвь некоторой сложной схемы (рис. 18).
Свяжем потенциалы концов ветви (узлов) между собой через падения напряжений на отдельных участках:
или
Уравнение, связывающее потенциалы конечных точек ветви через падения напряжений на ее отдельных участках, называется потенциальным уравнением ветви. Из потенциального уравнения ветви могут быть определены ток ветви и напряжение на резисторе:
, .
Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 19. Параметры отдельных элементов схемы заданы.
Принимаем потенциал узла 0 равным нулю (0 = 0), а потенциалы узлов 1 и 2 (1 и 2) будем считать неизвестными, подлежащими определению.
Зададимся положительными направлениями токов в ветвях схемы I1, I2, I3, I4, I5. Составим потенциальные уравнения ветвей и выразим из них токи ветвей:
I1 =(1 – 0 + E1 )/ R1
I2 =(2 – 0 + E2 )/ R2
I3 =(1 – 0 + E3 )/ R3
I4 =(0 – 1 )/ R4
I5 =(0 2 )/ R5
Составим (n1) уравнение по 1-му закону Кирхгофа для узлов 1 и 2:
I1 – I3 + I4 – J1 – J2 = 0
I2 + I3 + I5 + J2 =0
Подставим в уравнения 1-го закона Кирхгофа значения токов, выраженные ранее из потенциальных уравнений. После приведения коэффициентов получим систему узловых уравнений:
В обобщенной форме система узловых уравнений имеет вид:
1G112G123G13...nG1n= J11
1G21 + 2G222G23...nG2n= J22
1G312G32 +3G33...nG3n=J33
……........................................…...............
1Gn12Gn23Gn3...+ nGnn = Jnn
Здесь введены следующие обозначения:
G11 =1/R1 +1/R3 +1/R4;G22 =1/R2 +1/R3 +1/R5 и т.д. – собственные проводимости узлов, равные суммам проводимостей всех ветвей, сходящихся в данном узле, всегда положительны;
G12 = G21= 1/R3;Gnm = Gmn– взаимные проводимости между смежными узлами (1 и 2, m и n), равные сумме проводимостей ветвей, соединяющих эти узлы, всегда отрицательны;
J11 = E1 /R3 – E3 /R3 – J1; J11 =E2 /R2 – E3 /R3 + J1 и т. д. – узловые токи узлов, равные алгебраической сумме слагаемых E/R и J от всех ветвей, сходящихся в узле (знак ”+”, если источник действует к узлу, и знак “” , если источник действует от узла).
Система узловых уравнений в матричной форме:
или сокращенно ,
где матрица узловых проводимостей, матрица узловых потенциалов, матрица узловых токов.
Последовательность (алгоритм) расчета.
1) Принимают потенциал одного из узлов схемы равным нулю, а потенциалы остальных (n1) узла считают неизвестными, подлежащими определению.
2) Руководствуясь обобщенной формой, составляют (n-1) уравнение для узлов с неизвестными потенциалами.
3) Определяются коэффициенты узловых уравнений и составляются их матрицы.
4) Система узловых уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами, в результате чего определяются неизвестные потенциалы узлов 1, 2, …
5) Выбираются положительные направления токов в ветвях исходной схемы I1, I2 , I3, I4, I5. Токи ветвей определяются из потенциальных уравнений ветвей через потенциалы узлов 1, 2, ….
6) При необходимости определяются напряжения на отдельных элементах (Uk= IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и приемников энергии (Pk = Ik2Rk).
Однофазные и трехфазные электрические цепи.
Тема урока: Соединение фаз источника энергии и приемника звездой
Урок
Метод двух узлов является частным случаем метода узловых потенциалов при числе узлов в схеме n = 2. Пусть требуется выполнить расчет режима в заданной схеме (рис. 20).
Принимаем 0 = 0, тогда уравнение для узла 1 по методу узловых потенциалов будет иметь вид: 1G11 = J11, откуда следует непосредственное определение напряжения между узлами схемы:
уравнение метода двух узлов.
Применительно к схеме рис. 20 данное уравнение примет конкретную форму:
.
Токи в ветвях схемы определяются из потенциальных уравнений:
Принцип (теорема) наложения гласит, что ток в любой ветви (напряжение на любом элементе) сложной схемы, содержащей несколько источников, равен алгебраической сумме частичных токов (напряжений), возникающих в этой ветви (на этом элементе) от независимого действия каждого источника в отдельности. Для упрощения доказательства теоремы выберем одну из наружных ветвей сложной схемы за номером 1, в которой действительный ток равен контурному: I1 = Ik1. Составим для сложной схемы систему контурных уравнений и решим ее относительно тока I1 = Ik1 методом определителей (Крамера):
Здесь G11 – входная проводимость ветви 1, G12, G13, …, G1n– взаимные проводимости между 1-й и остальными ветвями, I11 = E1G11 – частичный ток в ветви 1 от источника ЭДС E1, I12 = E2G12, …, I1n = EnG1n – частичные токи в ветви 1 от источников ЭДС E2,…, En.
Принцип наложения выполняется только для тех физических величин, которые описываются линейными алгебраическими уравнениями, например, для токов и напряжений в линейных цепях. Принцип наложения не выполняется для мощности, которая с током связана нелинейным уравнением P=I2R.
Принцип наложения лежит в основе метода расчета сложных цепей, получившего название метода наложения. Сущность этого метода состоит в том, что в сложной схеме с несколькими источниками последовательно рассчитываются частичные токи от каждого источника в отдельности. Расчет частичных токов выполняют, как правило, методом преобразования схемы. Действительные токи определяются путем алгебраического сложения частичных токов с учетом их направлений.
Достарыңызбен бөлісу: |