z1=a+bi және z2=c+di cандары тең
Комплекс сандарының қосындысы комплекс сан болады.
Қосудың қасиеттері:
"z1,z2,z3C үшін (z1+z2)+z3=z1+(z2+z3),
$0C, "zC , z+0=0+z=z ,
"zC, $ –zC, z+(–z)=(–z)+z=0 ,
"z1,z2C; z1+z2=z2+z1 .
Комплек сандардың көбейтіндісі комплекс сан.
z=z1×z2=(a+bi)×(c+di)=(ac–bd)+(bc+ad)i.
Көбейтудің қасиеттері:
"z1,z2,z3C (z1×z2)×z3=z1×(z2×z3) (ассоциативті),
$1C, "zC, z×1=1×z=z (1=1+0×i),
"zC, $ z-1C, z×z-1=z-1×z=1 (z=a+bi және z-1= 1/z=(a/(a2+b2))+((–b)/(a2+b2))i),
"z1,z2C, z1×z2=z2×z1 (коммутативті).
Қосу мен көбейту амалдары дистрибутивтілік заңымен байланысқан
.
Достарыңызбен бөлісу: |