Для вычисления площади фигуры применяют формулу Ньютона-Лейбница
Пример 1
Вычислить площадь фигуры, ограниченной линиями , , , .
Это типовая формулировка задания. Первый и важнейший момент решения – построение чертежа. Причем, чертеж необходимо построить ПРАВИЛЬНО.
При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно, с техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций. Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.
В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):
Штриховать криволинейную трапецию я не буду, здесь очевидно, о какой площади идет речь. Решение продолжается так:
На отрезке график функции расположен над осью , поэтому:
Ответ:
Достарыңызбен бөлісу: |