«Сандық әдістер»



бет41/451
Дата12.03.2018
өлшемі34,89 Mb.
#39184
1   ...   37   38   39   40   41   42   43   44   ...   451

(1.3.)

(1.3.) – итерациялық тізбек жинақты болса, оның шегі (1.1.) итерациялық жүйенің шешімі болады. Тізбектің жинақтылығын дәлелдеу үшін функционалдық анализдің кейбір ұғымдары керек:



5. Зейдель әдісі.

  1. – жүйе (1.1.) – итерациялық түрге келтірілсін. Бұл жүйені қарапайым итерация әдісімен шешкенде итерациялық процесстің әр қадамы белгілі бастапқы жуықтаудан белгісіздің жаңа жуықтауына көшуден тұратын еді. Белгілі бастапқы жуықтаудың элементтерін x1, x2, … , xn деп, ал есептелетін келесі жуықтауларды y1, y2, … , yn деп белгілейік. Сонда есептеу формулалары келесі түрге көшеді:

(2.1.)

Зейдель әдісінің негізгі идеясы итерациялық процестің әр қадамында yi-дің мәндерін есептеу барысында оның алдында есептелген y1, y2, … , yi-1 мәндері қолданылады да (2.1.)– ді ашып жазсақ, Зейдель формуласы келесідей болады:



(2.2.)

(2.2.)– итерациялық процесінің жинақтылығы үш метрикалық кеңістікте мына шарттардың бірі орындалуымен бекітіледі:



Достарыңызбен бөлісу:
1   ...   37   38   39   40   41   42   43   44   ...   451




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет